Quadratic Diophantine Equation x2- ( t2- t ) y2- ( 4t-2 ) x + ( 4t2- 4t ) y = 0
Bulletin of the Malaysian Mathematical Society, Tome 33 (2010) no. 2
Cet article a éte moissonné depuis la source Bulletin of the Malaysian Mathematical Society website
Let t ≥ 2 be an integer. In this work, we consider the number of integer solutions of Diophantine equation D : x 2 - ( t 2 - t ) y 2 - (4 t - 2) t + (4 t 2 - 4 t ) y = 0 over . We also derive some recurrence relations on the integer solutions ( x n , y n ) of D . In the last section, we consider the same problem over finite fields for primes p ≥ 5.
Classification :
11D09, 11D79.
@article{BMMS_2010_33_2_a10,
author = {Arzu \"Ozko\c{c} and Ahmet Tekcan},
title = {Quadratic {Diophantine} {Equation} x2- ( t2- t ) y2- ( 4t-2 ) x + ( 4t2- 4t ) y = 0},
journal = {Bulletin of the Malaysian Mathematical Society},
year = {2010},
volume = {33},
number = {2},
url = {http://geodesic.mathdoc.fr/item/BMMS_2010_33_2_a10/}
}
Arzu Özkoç; Ahmet Tekcan. Quadratic Diophantine Equation x2- ( t2- t ) y2- ( 4t-2 ) x + ( 4t2- 4t ) y = 0. Bulletin of the Malaysian Mathematical Society, Tome 33 (2010) no. 2. http://geodesic.mathdoc.fr/item/BMMS_2010_33_2_a10/