Quadratic Diophantine Equation x2- ( t2- t ) y2- ( 4t-2 ) x + ( 4t2- 4t ) y = 0
Bulletin of the Malaysian Mathematical Society, Tome 33 (2010) no. 2 Cet article a éte moissonné depuis la source Bulletin of the Malaysian Mathematical Society website

Voir la notice de l'article

Let t ≥ 2 be an integer. In this work, we consider the number of integer solutions of Diophantine equation D : x 2 - ( t 2 - t ) y 2 - (4 t - 2) t + (4 t 2 - 4 t ) y = 0 over . We also derive some recurrence relations on the integer solutions ( x n , y n ) of D . In the last section, we consider the same problem over finite fields for primes p ≥ 5.
Classification : 11D09, 11D79.
@article{BMMS_2010_33_2_a10,
     author = {Arzu \"Ozko\c{c} and Ahmet Tekcan},
     title = {Quadratic {Diophantine} {Equation} x2- ( t2- t ) y2- ( 4t-2 ) x + ( 4t2- 4t ) y = 0},
     journal = {Bulletin of the Malaysian Mathematical Society},
     year = {2010},
     volume = {33},
     number = {2},
     url = {http://geodesic.mathdoc.fr/item/BMMS_2010_33_2_a10/}
}
TY  - JOUR
AU  - Arzu Özkoç
AU  - Ahmet Tekcan
TI  - Quadratic Diophantine Equation x2- ( t2- t ) y2- ( 4t-2 ) x + ( 4t2- 4t ) y = 0
JO  - Bulletin of the Malaysian Mathematical Society
PY  - 2010
VL  - 33
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/BMMS_2010_33_2_a10/
ID  - BMMS_2010_33_2_a10
ER  - 
%0 Journal Article
%A Arzu Özkoç
%A Ahmet Tekcan
%T Quadratic Diophantine Equation x2- ( t2- t ) y2- ( 4t-2 ) x + ( 4t2- 4t ) y = 0
%J Bulletin of the Malaysian Mathematical Society
%D 2010
%V 33
%N 2
%U http://geodesic.mathdoc.fr/item/BMMS_2010_33_2_a10/
%F BMMS_2010_33_2_a10
Arzu Özkoç; Ahmet Tekcan. Quadratic Diophantine Equation x2- ( t2- t ) y2- ( 4t-2 ) x + ( 4t2- 4t ) y = 0. Bulletin of the Malaysian Mathematical Society, Tome 33 (2010) no. 2. http://geodesic.mathdoc.fr/item/BMMS_2010_33_2_a10/