Minimal Sequences and the Kadison-Singer Problem
Bulletin of the Malaysian Mathematical Society, Tome 33 (2010) no. 2 Cet article a éte moissonné depuis la source Bulletin of the Malaysian Mathematical Society website

Voir la notice de l'article

The Kadison-Singer problem asks: does every pure state on the C *-algebra admit a unique extension to the C *-algebra ? A yes answer is equivalent to several open conjectures including Feichtinger's: every bounded frame is a finite union of Riesz sequences. We prove that for measurable is a finite union of Riesz sequences in if and only if there exists a nonempty such that is a minimal sequence and is a Riesz sequence. We also suggest some directions for future research.
Classification : Primary: 37B10, 42A55, 46L05.
@article{BMMS_2010_33_2_a0,
     author = {Wayne Lawton},
     title = {Minimal {Sequences} and the {Kadison-Singer} {Problem}},
     journal = {Bulletin of the Malaysian Mathematical Society},
     year = {2010},
     volume = {33},
     number = {2},
     url = {http://geodesic.mathdoc.fr/item/BMMS_2010_33_2_a0/}
}
TY  - JOUR
AU  - Wayne Lawton
TI  - Minimal Sequences and the Kadison-Singer Problem
JO  - Bulletin of the Malaysian Mathematical Society
PY  - 2010
VL  - 33
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/BMMS_2010_33_2_a0/
ID  - BMMS_2010_33_2_a0
ER  - 
%0 Journal Article
%A Wayne Lawton
%T Minimal Sequences and the Kadison-Singer Problem
%J Bulletin of the Malaysian Mathematical Society
%D 2010
%V 33
%N 2
%U http://geodesic.mathdoc.fr/item/BMMS_2010_33_2_a0/
%F BMMS_2010_33_2_a0
Wayne Lawton. Minimal Sequences and the Kadison-Singer Problem. Bulletin of the Malaysian Mathematical Society, Tome 33 (2010) no. 2. http://geodesic.mathdoc.fr/item/BMMS_2010_33_2_a0/