Tensor Product Surfaces in ℝ4and Lie Groups
Bulletin of the Malaysian Mathematical Society, Tome 33 (2010) no. 1 Cet article a éte moissonné depuis la source Bulletin of the Malaysian Mathematical Society website

Voir la notice de l'article

In this paper, we show that a hyperquadric M in ℝ 4 is a Lie group by using bicomplex number product. By means of the tensor product surfaces of Euclidean planar curves, we determine some special subgroup of this Lie group M . Thus, we obtain Lie group structure of tensor product surfaces of Euclidean planar curves. Moreover, we obtain left invariant vector fields of these Lie groups. We identify ℝ 4 with ℂ 2 and consider the left invariant vector fields on these group which constitute complex structure. By means of these, we characterize these Lie groups as totally real, complex or slant in ℝ 4 .
Classification : 53C40, 43A80, 30G35.
@article{BMMS_2010_33_1_a4,
     author = {Siddika \"Ozkaldi and Yusuf Yayli},
     title = {Tensor {Product} {Surfaces} in {\ensuremath{\mathbb{R}}4and} {Lie} {Groups}},
     journal = {Bulletin of the Malaysian Mathematical Society},
     year = {2010},
     volume = {33},
     number = {1},
     url = {http://geodesic.mathdoc.fr/item/BMMS_2010_33_1_a4/}
}
TY  - JOUR
AU  - Siddika Özkaldi
AU  - Yusuf Yayli
TI  - Tensor Product Surfaces in ℝ4and Lie Groups
JO  - Bulletin of the Malaysian Mathematical Society
PY  - 2010
VL  - 33
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/BMMS_2010_33_1_a4/
ID  - BMMS_2010_33_1_a4
ER  - 
%0 Journal Article
%A Siddika Özkaldi
%A Yusuf Yayli
%T Tensor Product Surfaces in ℝ4and Lie Groups
%J Bulletin of the Malaysian Mathematical Society
%D 2010
%V 33
%N 1
%U http://geodesic.mathdoc.fr/item/BMMS_2010_33_1_a4/
%F BMMS_2010_33_1_a4
Siddika Özkaldi; Yusuf Yayli. Tensor Product Surfaces in ℝ4and Lie Groups. Bulletin of the Malaysian Mathematical Society, Tome 33 (2010) no. 1. http://geodesic.mathdoc.fr/item/BMMS_2010_33_1_a4/