Triangles Which are Bounded Operators on
Bulletin of the Malaysian Mathematical Society, Tome 32 (2009) no. 2 Cet article a éte moissonné depuis la source Bulletin of the Malaysian Mathematical Society website

Voir la notice de l'article

A lower triangular infinite matrix is called a triangle if there are no zeros on the principal diagonal. The main result of this paper gives a minimal set of sufficient conditions for a triangle for the sequence space defined as follows:
Classification : 40C05.
@article{BMMS_2009_32_2_a9,
     author = {E. Sava\c{s} and H. \c{S}evli and B. E. Rhoades},
     title = {Triangles {Which} are {Bounded} {Operators} on},
     journal = {Bulletin of the Malaysian Mathematical Society},
     year = {2009},
     volume = {32},
     number = {2},
     url = {http://geodesic.mathdoc.fr/item/BMMS_2009_32_2_a9/}
}
TY  - JOUR
AU  - E. Savaş
AU  - H. Şevli
AU  - B. E. Rhoades
TI  - Triangles Which are Bounded Operators on
JO  - Bulletin of the Malaysian Mathematical Society
PY  - 2009
VL  - 32
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/BMMS_2009_32_2_a9/
ID  - BMMS_2009_32_2_a9
ER  - 
%0 Journal Article
%A E. Savaş
%A H. Şevli
%A B. E. Rhoades
%T Triangles Which are Bounded Operators on
%J Bulletin of the Malaysian Mathematical Society
%D 2009
%V 32
%N 2
%U http://geodesic.mathdoc.fr/item/BMMS_2009_32_2_a9/
%F BMMS_2009_32_2_a9
E. Savaş; H. Şevli; B. E. Rhoades. Triangles Which are Bounded Operators on. Bulletin of the Malaysian Mathematical Society, Tome 32 (2009) no. 2. http://geodesic.mathdoc.fr/item/BMMS_2009_32_2_a9/