Weak Convergence Theorem by an Extragradient Method for Variational Inequality, Equilibrium and Fixed Point Problems
Bulletin of the Malaysian Mathematical Society, Tome 32 (2009) no. 2
Cet article a éte moissonné depuis la source Bulletin of the Malaysian Mathematical Society website
In this paper, we introduce a new iterative scheme for finding the common element of the set of: fixed points; equilibrium; and the variational inequality problems for monotone and k -Lipschitz continuous mappings. The iterative process is based on the so-called extragradient method. We show that the sequence converges weakly to a common element of the above three sets under some parameter controlling conditions. This main theorem extends a recent result of Nadezhkiha and Takahashi [7].
Classification :
47H09, 47H10, 49J40, 47J20.
@article{BMMS_2009_32_2_a6,
author = {C. Jaiboon and P. Kumam and U. W. Humphries},
title = {Weak {Convergence} {Theorem} by an {Extragradient} {Method} for {Variational} {Inequality,} {Equilibrium} and {Fixed} {Point} {Problems}},
journal = {Bulletin of the Malaysian Mathematical Society},
year = {2009},
volume = {32},
number = {2},
url = {http://geodesic.mathdoc.fr/item/BMMS_2009_32_2_a6/}
}
TY - JOUR AU - C. Jaiboon AU - P. Kumam AU - U. W. Humphries TI - Weak Convergence Theorem by an Extragradient Method for Variational Inequality, Equilibrium and Fixed Point Problems JO - Bulletin of the Malaysian Mathematical Society PY - 2009 VL - 32 IS - 2 UR - http://geodesic.mathdoc.fr/item/BMMS_2009_32_2_a6/ ID - BMMS_2009_32_2_a6 ER -
%0 Journal Article %A C. Jaiboon %A P. Kumam %A U. W. Humphries %T Weak Convergence Theorem by an Extragradient Method for Variational Inequality, Equilibrium and Fixed Point Problems %J Bulletin of the Malaysian Mathematical Society %D 2009 %V 32 %N 2 %U http://geodesic.mathdoc.fr/item/BMMS_2009_32_2_a6/ %F BMMS_2009_32_2_a6
C. Jaiboon; P. Kumam; U. W. Humphries. Weak Convergence Theorem by an Extragradient Method for Variational Inequality, Equilibrium and Fixed Point Problems. Bulletin of the Malaysian Mathematical Society, Tome 32 (2009) no. 2. http://geodesic.mathdoc.fr/item/BMMS_2009_32_2_a6/