Analytical Treatment of Generalized Burgers-Huxley Equation by Homotopy Analysis Method
Bulletin of the Malaysian Mathematical Society, Tome 32 (2009) no. 2
Cet article a éte moissonné depuis la source Bulletin of the Malaysian Mathematical Society website
In this paper, the homotopy analysis method (HAM) is applied to obtain approximate analytical solutions of the generalized Burgers-Huxley and Huxley equations. The series solution is developed and given explicitly. The initial approximation can be freely chosen with possible unknown constants which can be determined by imposing the boundary and initial conditions. The comparison of the HAM results with the variational iteration method (VIM) results is made. It is shown, in particular, that the VIM solutions are only special cases of the HAM solutions.
Classification :
35Q53, 35L75, 35L75.
@article{BMMS_2009_32_2_a10,
author = {A. Sami Bataineh and M. S. M. Noorani and I. Hashim},
title = {Analytical {Treatment} of {Generalized} {Burgers-Huxley} {Equation} by {Homotopy} {Analysis} {Method}},
journal = {Bulletin of the Malaysian Mathematical Society},
year = {2009},
volume = {32},
number = {2},
url = {http://geodesic.mathdoc.fr/item/BMMS_2009_32_2_a10/}
}
TY - JOUR AU - A. Sami Bataineh AU - M. S. M. Noorani AU - I. Hashim TI - Analytical Treatment of Generalized Burgers-Huxley Equation by Homotopy Analysis Method JO - Bulletin of the Malaysian Mathematical Society PY - 2009 VL - 32 IS - 2 UR - http://geodesic.mathdoc.fr/item/BMMS_2009_32_2_a10/ ID - BMMS_2009_32_2_a10 ER -
%0 Journal Article %A A. Sami Bataineh %A M. S. M. Noorani %A I. Hashim %T Analytical Treatment of Generalized Burgers-Huxley Equation by Homotopy Analysis Method %J Bulletin of the Malaysian Mathematical Society %D 2009 %V 32 %N 2 %U http://geodesic.mathdoc.fr/item/BMMS_2009_32_2_a10/ %F BMMS_2009_32_2_a10
A. Sami Bataineh; M. S. M. Noorani; I. Hashim. Analytical Treatment of Generalized Burgers-Huxley Equation by Homotopy Analysis Method. Bulletin of the Malaysian Mathematical Society, Tome 32 (2009) no. 2. http://geodesic.mathdoc.fr/item/BMMS_2009_32_2_a10/