Ricci Generalized Pseudo-Parallel Kaehlerian Submanifolds in Complex Space Forms
Bulletin of the Malaysian Mathematical Society, Tome 31 (2008) no. 2
Cet article a éte moissonné depuis la source Bulletin of the Malaysian Mathematical Society website
Let M m (c) be a complex m -dimensional space form of holomorphic sectional curvature c and M n be a complex n-dimensional Kaehlerian submanifold of M m (c) . We prove that if M n is Ricci generalized pseudo-parallel, then either M n is totally geodesic, or || h || 2 = -2 ⁄ 3 ( L τ- 1 ⁄ 2( n +2) c ), or at some point x of M n , || h || 2 (x) > -2 ⁄ 3 ( L(x) τ (x) - 1 ⁄ 2( n +2) c ).
Classification :
Primary 53B20, 53B25, 53B50; Secondary 53C15.
@article{BMMS_2008_31_2_a4,
author = {Ahmet Yildiz and Cengizhan Murathan},
title = {Ricci {Generalized} {Pseudo-Parallel} {Kaehlerian} {Submanifolds} in {Complex} {Space} {Forms}},
journal = {Bulletin of the Malaysian Mathematical Society},
year = {2008},
volume = {31},
number = {2},
url = {http://geodesic.mathdoc.fr/item/BMMS_2008_31_2_a4/}
}
Ahmet Yildiz; Cengizhan Murathan. Ricci Generalized Pseudo-Parallel Kaehlerian Submanifolds in Complex Space Forms. Bulletin of the Malaysian Mathematical Society, Tome 31 (2008) no. 2. http://geodesic.mathdoc.fr/item/BMMS_2008_31_2_a4/