Bounds on Random Infinite Urn Model
Bulletin of the Malaysian Mathematical Society, Tome 30 (2007) no. 2 Cet article a éte moissonné depuis la source Bulletin of the Malaysian Mathematical Society website

Voir la notice de l'article

Let N(n) be a Poisson random variable with parameter n . An infinite urn model is defined as follows: N(n) balls are independently placed in an infinite set of urns and each ball has probability p k > 0 of being assigned to the k -th urn. We assume that p k ≥ p k+1 for all k and ∑ k=1 ∞ p k =1 . Let U n be the number of occupied urns after N(n) balls have been thrown. Dutko showed in
Classification : 60F05, 60G50
@article{BMMS_2007_30_2_a3,
     author = {S. Boonta and K. Neammanee},
     title = {Bounds on {Random} {Infinite} {Urn} {Model}},
     journal = {Bulletin of the Malaysian Mathematical Society},
     year = {2007},
     volume = {30},
     number = {2},
     url = {http://geodesic.mathdoc.fr/item/BMMS_2007_30_2_a3/}
}
TY  - JOUR
AU  - S. Boonta
AU  - K. Neammanee
TI  - Bounds on Random Infinite Urn Model
JO  - Bulletin of the Malaysian Mathematical Society
PY  - 2007
VL  - 30
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/BMMS_2007_30_2_a3/
ID  - BMMS_2007_30_2_a3
ER  - 
%0 Journal Article
%A S. Boonta
%A K. Neammanee
%T Bounds on Random Infinite Urn Model
%J Bulletin of the Malaysian Mathematical Society
%D 2007
%V 30
%N 2
%U http://geodesic.mathdoc.fr/item/BMMS_2007_30_2_a3/
%F BMMS_2007_30_2_a3
S. Boonta; K. Neammanee. Bounds on Random Infinite Urn Model. Bulletin of the Malaysian Mathematical Society, Tome 30 (2007) no. 2. http://geodesic.mathdoc.fr/item/BMMS_2007_30_2_a3/