The Symmetric Group of Degree Six can be Covered by 13 and no Fewer Proper Subgroups
Bulletin of the Malaysian Mathematical Society, Tome 30 (2007) no. 1 Cet article a éte moissonné depuis la source Bulletin of the Malaysian Mathematical Society website

Voir la notice de l'article

In this note, we prove that the symmetric group of degree six can be covered by 13 and no fewer proper subgroups. This partially answers a question of M. J. Tomkinson [Groups as the union of proper subgroups, Math. Scand. 81 (
Classification : 20D60.
@article{BMMS_2007_30_1_a6,
     author = {A. Abdollahi and F. Ashraf and S. M. Shaker},
     title = {The {Symmetric} {Group} of {Degree} {Six} can be {Covered} by 13 and no {Fewer} {Proper} {Subgroups}},
     journal = {Bulletin of the Malaysian Mathematical Society},
     year = {2007},
     volume = {30},
     number = {1},
     url = {http://geodesic.mathdoc.fr/item/BMMS_2007_30_1_a6/}
}
TY  - JOUR
AU  - A. Abdollahi
AU  - F. Ashraf
AU  - S. M. Shaker
TI  - The Symmetric Group of Degree Six can be Covered by 13 and no Fewer Proper Subgroups
JO  - Bulletin of the Malaysian Mathematical Society
PY  - 2007
VL  - 30
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/BMMS_2007_30_1_a6/
ID  - BMMS_2007_30_1_a6
ER  - 
%0 Journal Article
%A A. Abdollahi
%A F. Ashraf
%A S. M. Shaker
%T The Symmetric Group of Degree Six can be Covered by 13 and no Fewer Proper Subgroups
%J Bulletin of the Malaysian Mathematical Society
%D 2007
%V 30
%N 1
%U http://geodesic.mathdoc.fr/item/BMMS_2007_30_1_a6/
%F BMMS_2007_30_1_a6
A. Abdollahi; F. Ashraf; S. M. Shaker. The Symmetric Group of Degree Six can be Covered by 13 and no Fewer Proper Subgroups. Bulletin of the Malaysian Mathematical Society, Tome 30 (2007) no. 1. http://geodesic.mathdoc.fr/item/BMMS_2007_30_1_a6/