The Symmetric Group of Degree Six can be Covered by 13 and no Fewer Proper Subgroups
Bulletin of the Malaysian Mathematical Society, Tome 30 (2007) no. 1
Cet article a éte moissonné depuis la source Bulletin of the Malaysian Mathematical Society website
In this note, we prove that the symmetric group of degree six can be covered by 13 and no fewer proper subgroups. This partially answers a question of M. J. Tomkinson [Groups as the union of proper subgroups, Math. Scand. 81 (
Classification :
20D60.
@article{BMMS_2007_30_1_a6,
author = {A. Abdollahi and F. Ashraf and S. M. Shaker},
title = {The {Symmetric} {Group} of {Degree} {Six} can be {Covered} by 13 and no {Fewer} {Proper} {Subgroups}},
journal = {Bulletin of the Malaysian Mathematical Society},
year = {2007},
volume = {30},
number = {1},
url = {http://geodesic.mathdoc.fr/item/BMMS_2007_30_1_a6/}
}
TY - JOUR AU - A. Abdollahi AU - F. Ashraf AU - S. M. Shaker TI - The Symmetric Group of Degree Six can be Covered by 13 and no Fewer Proper Subgroups JO - Bulletin of the Malaysian Mathematical Society PY - 2007 VL - 30 IS - 1 UR - http://geodesic.mathdoc.fr/item/BMMS_2007_30_1_a6/ ID - BMMS_2007_30_1_a6 ER -
A. Abdollahi; F. Ashraf; S. M. Shaker. The Symmetric Group of Degree Six can be Covered by 13 and no Fewer Proper Subgroups. Bulletin of the Malaysian Mathematical Society, Tome 30 (2007) no. 1. http://geodesic.mathdoc.fr/item/BMMS_2007_30_1_a6/