Coalescence of Difans and Diwheels
Bulletin of the Malaysian Mathematical Society, Tome 30 (2007) no. 1 Cet article a éte moissonné depuis la source Bulletin of the Malaysian Mathematical Society website

Voir la notice de l'article

A directed graph G is nonderogatory if its adjacency matrix A is nonderogatory, i.e., the characteristic polynomial of A is equal to the minimal polynomial of A . We analyze the problem whether the coalescence of difans and diwheels is nonderogatory. Also, a formula for the characteristic polynomial of the coalescence of two directed graphs is presented.
Classification : 05C50.
@article{BMMS_2007_30_1_a5,
     author = {Diego Bravo and Juan Rada},
     title = {Coalescence of {Difans} and {Diwheels}},
     journal = {Bulletin of the Malaysian Mathematical Society},
     year = {2007},
     volume = {30},
     number = {1},
     url = {http://geodesic.mathdoc.fr/item/BMMS_2007_30_1_a5/}
}
TY  - JOUR
AU  - Diego Bravo
AU  - Juan Rada
TI  - Coalescence of Difans and Diwheels
JO  - Bulletin of the Malaysian Mathematical Society
PY  - 2007
VL  - 30
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/BMMS_2007_30_1_a5/
ID  - BMMS_2007_30_1_a5
ER  - 
%0 Journal Article
%A Diego Bravo
%A Juan Rada
%T Coalescence of Difans and Diwheels
%J Bulletin of the Malaysian Mathematical Society
%D 2007
%V 30
%N 1
%U http://geodesic.mathdoc.fr/item/BMMS_2007_30_1_a5/
%F BMMS_2007_30_1_a5
Diego Bravo; Juan Rada. Coalescence of Difans and Diwheels. Bulletin of the Malaysian Mathematical Society, Tome 30 (2007) no. 1. http://geodesic.mathdoc.fr/item/BMMS_2007_30_1_a5/