On Relative 1½-StarLindelöfness
Bulletin of the Malaysian Mathematical Society, Tome 29 (2006) no. 2
Cet article a éte moissonné depuis la source Bulletin of the Malaysian Mathematical Society website
A subspace Y of a space X is strongly 1½-starLindelöf in X if for every open cover U of X , there exists a countable subset V of U such that V ∩ Y ≠∅ for each V ∈ V and Y ⊆ S t (∪ V , U ), where St (∪ V , U )=∪{ U ∈ U : U ∩∪ V ≠∅}. A subspace Y of a space X is ½-starLindelöf in X if for every open cover U of X , there exists a countable subset V of U such that Y ⊆ S t (∪ V , U ). In this paper, we give an example to show the difference between relative strongly 1½-starLindelöfness and relative 1½-starLindelöfness.
Classification :
54A25, 54D20.
@article{BMMS_2006_29_2_a8,
author = {Yan-Kui Song and Guang-Fa Han and Pi-Yu Li},
title = {On {Relative} {1{\textonehalf}-StarLindel\"ofness}},
journal = {Bulletin of the Malaysian Mathematical Society},
year = {2006},
volume = {29},
number = {2},
url = {http://geodesic.mathdoc.fr/item/BMMS_2006_29_2_a8/}
}
Yan-Kui Song; Guang-Fa Han; Pi-Yu Li. On Relative 1½-StarLindelöfness. Bulletin of the Malaysian Mathematical Society, Tome 29 (2006) no. 2. http://geodesic.mathdoc.fr/item/BMMS_2006_29_2_a8/