Chromatically Unique Bipartite Graphs with Certain 3-independent
Partition Numbers II
Bulletin of the Malaysian Mathematical Society, Tome 29 (2006) no. 2
Cet article a éte moissonné depuis la source Bulletin of the Malaysian Mathematical Society website
For integers p , q , s with p ≥ q ≥2 and s ≥0, let K 2 - s ( p , q ) denote the set of 2 - connected bipartite graphs which can be obtained from K p , q by deleting a set of s edges. In this paper, we prove that for any graph G ∈ K 2 - s ( p , q ) with p ≥ q ≥3 and 1≤ s ≤ q - 1, if the number of 3-independent partitions of G is 2 p - 1 + 2 q - 1 + s + 4, then G is chromatically unique. This result extends the similar theorem by Dong et al. [Discrete Math. 224 (
Classification :
Primary 05C15.
@article{BMMS_2006_29_2_a5,
author = {Roslan Hasni and Y.H. Peng},
title = {Chromatically {Unique} {Bipartite} {Graphs} with {Certain} 3-independent
{Partition} {Numbers} {II}},
journal = {Bulletin of the Malaysian Mathematical Society},
year = {2006},
volume = {29},
number = {2},
url = {http://geodesic.mathdoc.fr/item/BMMS_2006_29_2_a5/}
}
Roslan Hasni; Y.H. Peng. Chromatically Unique Bipartite Graphs with Certain 3-independent
Partition Numbers II. Bulletin of the Malaysian Mathematical Society, Tome 29 (2006) no. 2. http://geodesic.mathdoc.fr/item/BMMS_2006_29_2_a5/