Stronglyψ-Bounded and Classes of Linear Operators in Probabilistic Normed Space
Bulletin of the Malaysian Mathematical Society, Tome 28 (2005) no. 2 Cet article a éte moissonné depuis la source Bulletin of the Malaysian Mathematical Society website

Voir la notice de l'article

In this paper we redefined the definition of a bounded linear operator in probabilistic normed space by introducing the notion of strongly ψ-bounded linear maps. We then show that this new definition of boundedness implies all contraction functions in probabilistic normed space are bounded. Also, we introduce the classes of linear operators in probabilistic normed space, as the set of all certainly bounded L c ( V , V '), D -bounded L D ( V , V '), strongly B -bounded L B ( V , V '), and strongly ψ-bounded L ψ ( V , V ') we then prove they are linear spaces.
Classification : 54E70.
@article{BMMS_2005_28_2_a7,
     author = {Iqbal Hamzh Jebril and Mohd. Salmi Md. Noorani},
     title = {Strongly\ensuremath{\psi}-Bounded and {Classes} of {Linear} {Operators} {in
Probabilistic} {Normed} {Space}},
     journal = {Bulletin of the Malaysian Mathematical Society},
     year = {2005},
     volume = {28},
     number = {2},
     url = {http://geodesic.mathdoc.fr/item/BMMS_2005_28_2_a7/}
}
TY  - JOUR
AU  - Iqbal Hamzh Jebril
AU  - Mohd. Salmi Md. Noorani
TI  - Stronglyψ-Bounded and Classes of Linear Operators in
Probabilistic Normed Space
JO  - Bulletin of the Malaysian Mathematical Society
PY  - 2005
VL  - 28
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/BMMS_2005_28_2_a7/
ID  - BMMS_2005_28_2_a7
ER  - 
%0 Journal Article
%A Iqbal Hamzh Jebril
%A Mohd. Salmi Md. Noorani
%T Stronglyψ-Bounded and Classes of Linear Operators in
Probabilistic Normed Space
%J Bulletin of the Malaysian Mathematical Society
%D 2005
%V 28
%N 2
%U http://geodesic.mathdoc.fr/item/BMMS_2005_28_2_a7/
%F BMMS_2005_28_2_a7
Iqbal Hamzh Jebril; Mohd. Salmi Md. Noorani. Stronglyψ-Bounded and Classes of Linear Operators in
Probabilistic Normed Space. Bulletin of the Malaysian Mathematical Society, Tome 28 (2005) no. 2. http://geodesic.mathdoc.fr/item/BMMS_2005_28_2_a7/