Special Classes of Univalent Functions with Missing Coefficients and
Integral Transforms
Bulletin of the Malaysian Mathematical Society, Tome 28 (2005) no. 2
Cet article a éte moissonné depuis la source Bulletin of the Malaysian Mathematical Society website
Let A n be the class of all analytic functions f of the form f ( z )= z + ∑ k = n + 1 ∞ a k z k , z ∈Δ, where n ∈ N is fixed. For λ>0 and α1, define U n (λ)={ f ∈ A n : |( z / f ( z )) n + 1 f '( z ) - 1|, z ∈Δ} and S α ∗ ={ f ∈ S ∗ (α): | z f '( z )/ f ( z ) - 1|1 - α, z ∈Δ}. In this paper, we find suitable conditions on λ and α so that U n (λ) is included in S α and S ∗ (α). Here S α and S ∗ (α) denote the usual classes of strongly starlike and starlike of order α, respectively. We determine necessary conditions so that f ∈ U n (λ) implies that | z f '( z )/ f ( z ) - 1/(2β)|1/(2β), z ∈Δ, or |1 + z f ''( z )/ f '( z ) - 1/(2β)|1/(2β), | z | r , where r = r (λ, n ) will be specified. For c + 1 - n >0, define [ I ( f )]( z )= F ( z )= z [( c + 1 - n )/ z c + 1 - n .∫ 0 z ( t / f ( t )) n t c - n d t ] 1/ n . We also find conditions on λ, α and c so that I ( U n (λ))⊂ S α ∗ .
Classification :
30C45, 30C55.
@article{BMMS_2005_28_2_a4,
author = {S. Ponnusamy and P. Sahoo},
title = {Special {Classes} of {Univalent} {Functions} with {Missing} {Coefficients} {and
Integral} {Transforms}},
journal = {Bulletin of the Malaysian Mathematical Society},
year = {2005},
volume = {28},
number = {2},
url = {http://geodesic.mathdoc.fr/item/BMMS_2005_28_2_a4/}
}
S. Ponnusamy; P. Sahoo. Special Classes of Univalent Functions with Missing Coefficients and Integral Transforms. Bulletin of the Malaysian Mathematical Society, Tome 28 (2005) no. 2. http://geodesic.mathdoc.fr/item/BMMS_2005_28_2_a4/