Optimal Allocation in Multivariate Sampling Through Chebyshev Approximation
Bulletin of the Malaysian Mathematical Society, Tome 26 (2003) no. 2 Cet article a éte moissonné depuis la source Bulletin of the Malaysian Mathematical Society website

Voir la notice de l'article

In multivariate stratified sampling the problem of allocating the sample to various strata can be formulated as a programming problem with several linear objective functions and single convex constraint. The problem has been solved by finding the Chebyshev point for various conflicting objective functions. A comparison with the fuzzy programming solution has also been made.
@article{BMMS_2003_26_2_a9,
     author = {S. Pirzada and S. Maqbool},
     title = {Optimal {Allocation} in {Multivariate
}                        {Sampling} {Through} {Chebyshev} {Approximation}},
     journal = {Bulletin of the Malaysian Mathematical Society},
     year = {2003},
     volume = {26},
     number = {2},
     url = {http://geodesic.mathdoc.fr/item/BMMS_2003_26_2_a9/}
}
TY  - JOUR
AU  - S. Pirzada
AU  - S. Maqbool
TI  - Optimal Allocation in Multivariate
                        Sampling Through Chebyshev Approximation
JO  - Bulletin of the Malaysian Mathematical Society
PY  - 2003
VL  - 26
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/BMMS_2003_26_2_a9/
ID  - BMMS_2003_26_2_a9
ER  - 
%0 Journal Article
%A S. Pirzada
%A S. Maqbool
%T Optimal Allocation in Multivariate
                        Sampling Through Chebyshev Approximation
%J Bulletin of the Malaysian Mathematical Society
%D 2003
%V 26
%N 2
%U http://geodesic.mathdoc.fr/item/BMMS_2003_26_2_a9/
%F BMMS_2003_26_2_a9
S. Pirzada; S. Maqbool. Optimal Allocation in Multivariate
                        Sampling Through Chebyshev Approximation. Bulletin of the Malaysian Mathematical Society, Tome 26 (2003) no. 2. http://geodesic.mathdoc.fr/item/BMMS_2003_26_2_a9/