On a Class of Residually Finite Groups
Bulletin of the Malaysian Mathematical Society, Tome 26 (2003) no. 2 Cet article a éte moissonné depuis la source Bulletin of the Malaysian Mathematical Society website

Voir la notice de l'article

Let be positive integers and be non-zero integers. We denote by the class of groups in which, for every subset of of cardinality , there exist a subset , with ,, and a function , with such that where , . The class is defined exactly as , with additional conditions " whenever , where ". Let G be a finitely generated residually finite group. Here we prove that (1) If , then has a normal nilpotent subgroup with finite index such that the nilpotency class of is bounded by a function of , where , is the torsion subgroup of . (2) If be generated, then has a normal nilpotent subgroup whose index and the nilpotency class are bounded by a function of .
@article{BMMS_2003_26_2_a8,
     author = {Bijan Taeri},
     title = {On
                          a {Class} of {Residually} {Finite} {Groups}},
     journal = {Bulletin of the Malaysian Mathematical Society},
     year = {2003},
     volume = {26},
     number = {2},
     url = {http://geodesic.mathdoc.fr/item/BMMS_2003_26_2_a8/}
}
TY  - JOUR
AU  - Bijan Taeri
TI  - On
                          a Class of Residually Finite Groups
JO  - Bulletin of the Malaysian Mathematical Society
PY  - 2003
VL  - 26
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/BMMS_2003_26_2_a8/
ID  - BMMS_2003_26_2_a8
ER  - 
%0 Journal Article
%A Bijan Taeri
%T On
                          a Class of Residually Finite Groups
%J Bulletin of the Malaysian Mathematical Society
%D 2003
%V 26
%N 2
%U http://geodesic.mathdoc.fr/item/BMMS_2003_26_2_a8/
%F BMMS_2003_26_2_a8
Bijan Taeri. On
                          a Class of Residually Finite Groups. Bulletin of the Malaysian Mathematical Society, Tome 26 (2003) no. 2. http://geodesic.mathdoc.fr/item/BMMS_2003_26_2_a8/