Parabolic-Elliptic Correspondence
of a Three-Level Finite Difference Approximation to the
Heat Equation
Bulletin of the Malaysian Mathematical Society, Tome 26 (2003) no. 1
Cet article a éte moissonné depuis la source Bulletin of the Malaysian Mathematical Society website
We consider three-level difference replacements of parabolic equations focussing on the heat equation in two-space dimensions. Through a judicious splitting of the approximation, the scheme qualifies as an ADI method. Using the well-known fact of the parabolic-elliptic correspondence, we shall derive a two-stage iterative proceduce employing a fractional splitting strategy applied alternately at each intermediate time step.
@article{BMMS_2003_26_1_a9,
author = {Mohd Salleh Sahimi and Norma Alias and Noreliza Abu Mansor and Norhalena Mohd Nor},
title = {Parabolic-Elliptic {Correspondence
} of a {Three-Level} {Finite} {Difference} {Approximation} to the
{Heat} {Equation}},
journal = {Bulletin of the Malaysian Mathematical Society},
year = {2003},
volume = {26},
number = {1},
url = {http://geodesic.mathdoc.fr/item/BMMS_2003_26_1_a9/}
}
TY - JOUR
AU - Mohd Salleh Sahimi
AU - Norma Alias
AU - Noreliza Abu Mansor
AU - Norhalena Mohd Nor
TI - Parabolic-Elliptic Correspondence
of a Three-Level Finite Difference Approximation to the
Heat Equation
JO - Bulletin of the Malaysian Mathematical Society
PY - 2003
VL - 26
IS - 1
UR - http://geodesic.mathdoc.fr/item/BMMS_2003_26_1_a9/
ID - BMMS_2003_26_1_a9
ER -
%0 Journal Article
%A Mohd Salleh Sahimi
%A Norma Alias
%A Noreliza Abu Mansor
%A Norhalena Mohd Nor
%T Parabolic-Elliptic Correspondence
of a Three-Level Finite Difference Approximation to the
Heat Equation
%J Bulletin of the Malaysian Mathematical Society
%D 2003
%V 26
%N 1
%U http://geodesic.mathdoc.fr/item/BMMS_2003_26_1_a9/
%F BMMS_2003_26_1_a9
Mohd Salleh Sahimi; Norma Alias; Noreliza Abu Mansor; Norhalena Mohd Nor. Parabolic-Elliptic Correspondence
of a Three-Level Finite Difference Approximation to the
Heat Equation. Bulletin of the Malaysian Mathematical Society, Tome 26 (2003) no. 1. http://geodesic.mathdoc.fr/item/BMMS_2003_26_1_a9/