A
Brief Overview of Fornberg-like Methods for Conformal
Mapping of Simply and Multiply Connected Regions
Bulletin of the Malaysian Mathematical Society, Tome 26 (2003) no. 1
Cet article a éte moissonné depuis la source Bulletin of the Malaysian Mathematical Society website
We give simplified derivations of Fornberg-like methods for conformal mapping of simply and multiply connected regions. The computational domains are circular domains and the derivations are based on Fourier series leading to conditions for analytic extension of boundary values to the computational domain. Linearization of these conditions with respect to the boundary correspondences and conformal moduli lead to Newton methods for approximating the mapping function. The linear systems can be solved by the conjugate gradient method.
@article{BMMS_2003_26_1_a6,
author = {Noureddine Benchama and Thomas K. DeLillo},
title = {A
{Brief} {Overview} of {Fornberg-like} {Methods} for {Conformal
} {Mapping} of {Simply} and {Multiply} {Connected} {Regions}},
journal = {Bulletin of the Malaysian Mathematical Society},
year = {2003},
volume = {26},
number = {1},
url = {http://geodesic.mathdoc.fr/item/BMMS_2003_26_1_a6/}
}
TY - JOUR
AU - Noureddine Benchama
AU - Thomas K. DeLillo
TI - A
Brief Overview of Fornberg-like Methods for Conformal
Mapping of Simply and Multiply Connected Regions
JO - Bulletin of the Malaysian Mathematical Society
PY - 2003
VL - 26
IS - 1
UR - http://geodesic.mathdoc.fr/item/BMMS_2003_26_1_a6/
ID - BMMS_2003_26_1_a6
ER -
%0 Journal Article
%A Noureddine Benchama
%A Thomas K. DeLillo
%T A
Brief Overview of Fornberg-like Methods for Conformal
Mapping of Simply and Multiply Connected Regions
%J Bulletin of the Malaysian Mathematical Society
%D 2003
%V 26
%N 1
%U http://geodesic.mathdoc.fr/item/BMMS_2003_26_1_a6/
%F BMMS_2003_26_1_a6
Noureddine Benchama; Thomas K. DeLillo. A
Brief Overview of Fornberg-like Methods for Conformal
Mapping of Simply and Multiply Connected Regions. Bulletin of the Malaysian Mathematical Society, Tome 26 (2003) no. 1. http://geodesic.mathdoc.fr/item/BMMS_2003_26_1_a6/