More on Semi-Urysohn Spaces
Bulletin of the Malaysian Mathematical Society, Tome 25 (2002) no. 2 Cet article a éte moissonné depuis la source Bulletin of the Malaysian Mathematical Society website

Voir la notice de l'article

The aim of this note is to present some results concerning the class of semi-Urysohn spaces, a concept which has been introduced by M.P. Bhamini [4] under the name of 's-Urysohn spaces'. Semi-Urysohn spaces resp. s-Urysohn spaces have been further investigated in [1], [2] and [5], and quite recently by Noiri and Umehara [20]. Several examples are provided in order to differentiate semi-Urysohn spaces from some other well-known classes of topological spaces. We prove that every Hausdorff space is homeomorphic to a closed subspace of a Hausdorff semi-Urysohn space as well as that the product of every first countable Hausdorff space with the usual space of reals is semi-Urysohn.
@article{BMMS_2002_25_2_a3,
     author = {Julian Dontchev and Maximilian Ganster},
     title = {More
                        on {Semi-Urysohn} {Spaces}},
     journal = {Bulletin of the Malaysian Mathematical Society},
     year = {2002},
     volume = {25},
     number = {2},
     url = {http://geodesic.mathdoc.fr/item/BMMS_2002_25_2_a3/}
}
TY  - JOUR
AU  - Julian Dontchev
AU  - Maximilian Ganster
TI  - More
                        on Semi-Urysohn Spaces
JO  - Bulletin of the Malaysian Mathematical Society
PY  - 2002
VL  - 25
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/BMMS_2002_25_2_a3/
ID  - BMMS_2002_25_2_a3
ER  - 
%0 Journal Article
%A Julian Dontchev
%A Maximilian Ganster
%T More
                        on Semi-Urysohn Spaces
%J Bulletin of the Malaysian Mathematical Society
%D 2002
%V 25
%N 2
%U http://geodesic.mathdoc.fr/item/BMMS_2002_25_2_a3/
%F BMMS_2002_25_2_a3
Julian Dontchev; Maximilian Ganster. More
                        on Semi-Urysohn Spaces. Bulletin of the Malaysian Mathematical Society, Tome 25 (2002) no. 2. http://geodesic.mathdoc.fr/item/BMMS_2002_25_2_a3/