A Unicity Theorem for Meromorphic Functions
Bulletin of the Malaysian Mathematical Society, Tome 25 (2002) no. 1 Cet article a éte moissonné depuis la source Bulletin of the Malaysian Mathematical Society website

Voir la notice de l'article

In this paper, we study the uniqueness of meromorphic functions and prove the following result: Let be a positive integer, , and let and be two nonconstant meromorphic functions whose poles are of multiplicities at least 2. If , , and , then . This result also answer a question of Gross [4] and improve some results of Fang and Xu [1], Yi [14] and Yi [15].
@article{BMMS_2002_25_1_a4,
     author = {Huiling Qiu and Mingliang Fang},
     title = {A
                        {Unicity} {Theorem} for {Meromorphic} {Functions}},
     journal = {Bulletin of the Malaysian Mathematical Society},
     year = {2002},
     volume = {25},
     number = {1},
     url = {http://geodesic.mathdoc.fr/item/BMMS_2002_25_1_a4/}
}
TY  - JOUR
AU  - Huiling Qiu
AU  - Mingliang Fang
TI  - A
                        Unicity Theorem for Meromorphic Functions
JO  - Bulletin of the Malaysian Mathematical Society
PY  - 2002
VL  - 25
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/BMMS_2002_25_1_a4/
ID  - BMMS_2002_25_1_a4
ER  - 
%0 Journal Article
%A Huiling Qiu
%A Mingliang Fang
%T A
                        Unicity Theorem for Meromorphic Functions
%J Bulletin of the Malaysian Mathematical Society
%D 2002
%V 25
%N 1
%U http://geodesic.mathdoc.fr/item/BMMS_2002_25_1_a4/
%F BMMS_2002_25_1_a4
Huiling Qiu; Mingliang Fang. A
                        Unicity Theorem for Meromorphic Functions. Bulletin of the Malaysian Mathematical Society, Tome 25 (2002) no. 1. http://geodesic.mathdoc.fr/item/BMMS_2002_25_1_a4/