Abstract.
Bulletin of the Malaysian Mathematical Society, Tome 23 (2000) no. 1 Cet article a éte moissonné depuis la source Bulletin of the Malaysian Mathematical Society website

Voir la notice de l'article

In page 297 of Pilz[4] a right near-ring N is called a near-ring if xN=xNx(Nx=xNx) for all x in N . Szasz, Frence, in [6] calls a ring N , with the property xN=xNx for all x in N , a -ring. We shall, in this paper, refer to a near-ring N with the property xN=xNx for all x in N , a near-ring. Motivated by these concepts we introduce P k and P k ' near-rings (Definition 2.1). We further generalize these concepts by introducing P k (r,m) and P k '(r,m) near-rings (Definition 3.1). We discuss the properties of all these newly introduced structures in detail. We also obtain complete charcterisations and structure theorems for such near rings.
@article{BMMS_2000_23_1_a1,
     author = {R. Balakrishnan and S. Suryanarayanan},
     title = {Abstract.},
     journal = {Bulletin of the Malaysian Mathematical Society},
     year = {2000},
     volume = {23},
     number = {1},
     url = {http://geodesic.mathdoc.fr/item/BMMS_2000_23_1_a1/}
}
TY  - JOUR
AU  - R. Balakrishnan
AU  - S. Suryanarayanan
TI  - Abstract.
JO  - Bulletin of the Malaysian Mathematical Society
PY  - 2000
VL  - 23
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/BMMS_2000_23_1_a1/
ID  - BMMS_2000_23_1_a1
ER  - 
%0 Journal Article
%A R. Balakrishnan
%A S. Suryanarayanan
%T Abstract.
%J Bulletin of the Malaysian Mathematical Society
%D 2000
%V 23
%N 1
%U http://geodesic.mathdoc.fr/item/BMMS_2000_23_1_a1/
%F BMMS_2000_23_1_a1
R. Balakrishnan; S. Suryanarayanan. Abstract.. Bulletin of the Malaysian Mathematical Society, Tome 23 (2000) no. 1. http://geodesic.mathdoc.fr/item/BMMS_2000_23_1_a1/