On Digraphs with Non-derogatory Adjacency Matrix
Bulletin of the Malaysian Mathematical Society, Tome 21 (1998) no. 2 Cet article a éte moissonné depuis la source Bulletin of the Malaysian Mathematical Society website

Voir la notice de l'article

Let G be a digraph with n vertices and A(G) be its adjacency matrix. A monic polynomial f(x) of degree at most n is called an annihilating polynomial of G if f ( A(G)) = 0 . G is said to be annihilatingly unique if it possesses a unique annihilating polynomial. We prove that two families of digraphs, i.e., the ladder digraphs and the difans, are annihilatingly unique by studying the similarity invariants of their adjacency matrices respectively.
@article{BMMS_1998_21_2_a3,
     author = {C.L. Deng and C.S. Gan},
     title = {On
                        {Digraphs} with {Non-derogatory} {Adjacency} {Matrix}},
     journal = {Bulletin of the Malaysian Mathematical Society},
     year = {1998},
     volume = {21},
     number = {2},
     url = {http://geodesic.mathdoc.fr/item/BMMS_1998_21_2_a3/}
}
TY  - JOUR
AU  - C.L. Deng
AU  - C.S. Gan
TI  - On
                        Digraphs with Non-derogatory Adjacency Matrix
JO  - Bulletin of the Malaysian Mathematical Society
PY  - 1998
VL  - 21
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/BMMS_1998_21_2_a3/
ID  - BMMS_1998_21_2_a3
ER  - 
%0 Journal Article
%A C.L. Deng
%A C.S. Gan
%T On
                        Digraphs with Non-derogatory Adjacency Matrix
%J Bulletin of the Malaysian Mathematical Society
%D 1998
%V 21
%N 2
%U http://geodesic.mathdoc.fr/item/BMMS_1998_21_2_a3/
%F BMMS_1998_21_2_a3
C.L. Deng; C.S. Gan. On
                        Digraphs with Non-derogatory Adjacency Matrix. Bulletin of the Malaysian Mathematical Society, Tome 21 (1998) no. 2. http://geodesic.mathdoc.fr/item/BMMS_1998_21_2_a3/