On some results of the study of $F$-irregular graphs in the class of biconnected graphs $F$
Journal of the Belarusian State University. Mathematics and Informatics, Tome 2 (2024), pp. 54-64.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider herein the well-known problem of $F$-irregular graphs in relation to the class of biconnected graphs $F$. It is established that for any natural $n\geq 8$ there exists a $K_{3}$-irregular graph of order $n$. The concept of an almost-almost $F$-irregular graph is introduced, on the basis of which a sufficient condition for the existence of an infinite number of $F$-irregular graphs is found for each graph $F$ from the specified class. It is proved that for any biconnected graph $F$, the minimum of whose vertex degrees is $2$, there are infinitely many $F$-irregular graphs.
Keywords: $F$-degree of a vertex; $F$-irregular graph; biconnected graph; $(K_{3}, K_{2})$ -consistent graph; almost-almost $F$-irregular graph; strong hypothesis about $F$-irregular graphs
@article{BGUMI_2024_2_a4,
     author = {T. S. Dovzhenok and A. V. Filuta and N. E. Chuhai},
     title = {On some results of the study of $F$-irregular graphs in the class of biconnected graphs $F$},
     journal = {Journal of the Belarusian State University. Mathematics and Informatics},
     pages = {54--64},
     publisher = {mathdoc},
     volume = {2},
     year = {2024},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/BGUMI_2024_2_a4/}
}
TY  - JOUR
AU  - T. S. Dovzhenok
AU  - A. V. Filuta
AU  - N. E. Chuhai
TI  - On some results of the study of $F$-irregular graphs in the class of biconnected graphs $F$
JO  - Journal of the Belarusian State University. Mathematics and Informatics
PY  - 2024
SP  - 54
EP  - 64
VL  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/BGUMI_2024_2_a4/
LA  - ru
ID  - BGUMI_2024_2_a4
ER  - 
%0 Journal Article
%A T. S. Dovzhenok
%A A. V. Filuta
%A N. E. Chuhai
%T On some results of the study of $F$-irregular graphs in the class of biconnected graphs $F$
%J Journal of the Belarusian State University. Mathematics and Informatics
%D 2024
%P 54-64
%V 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/BGUMI_2024_2_a4/
%G ru
%F BGUMI_2024_2_a4
T. S. Dovzhenok; A. V. Filuta; N. E. Chuhai. On some results of the study of $F$-irregular graphs in the class of biconnected graphs $F$. Journal of the Belarusian State University. Mathematics and Informatics, Tome 2 (2024), pp. 54-64. http://geodesic.mathdoc.fr/item/BGUMI_2024_2_a4/

[1] M. Behzad, G. Chartrand, “No graph is perfect”, The American Mathematical Monthly, 74(8) (1967), 962–963 | DOI

[2] Y. Alavi, G. Chartrand, FRK. Chung, P. Erdos, R. L. Graham, O. R. Oellermann, “Highly irregular graphs”, Journal of Graph Theory, 11(2) (1987), 235–249 | DOI

[3] G. Chartrand, P. Erdos, O. R. Oellermann, “How to define an irregular graph”, The College Mathematics Journal, 19(1) (1988), 36–42 | DOI

[4] A. Ali, G. Chartrand, P. Zhang, Irregularity in graphs, Springer briefs in mathematics, Springer, Cham, 2021, X+109 pp. | DOI

[5] G. Chartrand, K. S. Holbert, O. R. Oellermann, H. C. Swart, “F-degrees in graphs”, Ars Combinatoria, 24 (1987), 133–148