On some results of the study of $F$-irregular graphs in the class of biconnected graphs $F$
Journal of the Belarusian State University. Mathematics and Informatics, Tome 2 (2024), pp. 54-64
Cet article a éte moissonné depuis la source Math-Net.Ru
We consider herein the well-known problem of $F$-irregular graphs in relation to the class of biconnected graphs $F$. It is established that for any natural $n\geq 8$ there exists a $K_{3}$-irregular graph of order $n$. The concept of an almost-almost $F$-irregular graph is introduced, on the basis of which a sufficient condition for the existence of an infinite number of $F$-irregular graphs is found for each graph $F$ from the specified class. It is proved that for any biconnected graph $F$, the minimum of whose vertex degrees is $2$, there are infinitely many $F$-irregular graphs.
Keywords:
$F$-degree of a vertex; $F$-irregular graph; biconnected graph; $(K_{3}, K_{2})$ -consistent graph; almost-almost $F$-irregular graph; strong hypothesis about $F$-irregular graphs
@article{BGUMI_2024_2_a4,
author = {T. S. Dovzhenok and A. V. Filuta and N. E. Chuhai},
title = {On some results of the study of $F$-irregular graphs in the class of biconnected graphs $F$},
journal = {Journal of the Belarusian State University. Mathematics and Informatics},
pages = {54--64},
year = {2024},
volume = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/BGUMI_2024_2_a4/}
}
TY - JOUR AU - T. S. Dovzhenok AU - A. V. Filuta AU - N. E. Chuhai TI - On some results of the study of $F$-irregular graphs in the class of biconnected graphs $F$ JO - Journal of the Belarusian State University. Mathematics and Informatics PY - 2024 SP - 54 EP - 64 VL - 2 UR - http://geodesic.mathdoc.fr/item/BGUMI_2024_2_a4/ LA - ru ID - BGUMI_2024_2_a4 ER -
%0 Journal Article %A T. S. Dovzhenok %A A. V. Filuta %A N. E. Chuhai %T On some results of the study of $F$-irregular graphs in the class of biconnected graphs $F$ %J Journal of the Belarusian State University. Mathematics and Informatics %D 2024 %P 54-64 %V 2 %U http://geodesic.mathdoc.fr/item/BGUMI_2024_2_a4/ %G ru %F BGUMI_2024_2_a4
T. S. Dovzhenok; A. V. Filuta; N. E. Chuhai. On some results of the study of $F$-irregular graphs in the class of biconnected graphs $F$. Journal of the Belarusian State University. Mathematics and Informatics, Tome 2 (2024), pp. 54-64. http://geodesic.mathdoc.fr/item/BGUMI_2024_2_a4/
[1] M. Behzad, G. Chartrand, “No graph is perfect”, The American Mathematical Monthly, 74(8) (1967), 962–963 | DOI
[2] Y. Alavi, G. Chartrand, FRK. Chung, P. Erdos, R. L. Graham, O. R. Oellermann, “Highly irregular graphs”, Journal of Graph Theory, 11(2) (1987), 235–249 | DOI
[3] G. Chartrand, P. Erdos, O. R. Oellermann, “How to define an irregular graph”, The College Mathematics Journal, 19(1) (1988), 36–42 | DOI
[4] A. Ali, G. Chartrand, P. Zhang, Irregularity in graphs, Springer briefs in mathematics, Springer, Cham, 2021, X+109 pp. | DOI
[5] G. Chartrand, K. S. Holbert, O. R. Oellermann, H. C. Swart, “F-degrees in graphs”, Ars Combinatoria, 24 (1987), 133–148