Representations of solutions of first order linear canonical hyperbolic integro-differential equations
Journal of the Belarusian State University. Mathematics and Informatics, Tome 1 (2024), pp. 86-92.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, we consider the boundary value problem for one class of linear hyperbolic integro-differential equations of the first order. With the help of analogies of the Cauchy matrix and the resolvent, representations of the solution of the considered boundary value problem are obtained.
Keywords: Linear hyperbolic integro-differential equations; representation of solutions; analog of the Cauchy matrix; second order Volterra equations
@article{BGUMI_2024_1_a7,
     author = {A. G. Agamaliyev and K. B. Mansimov and R. O. Mastaliev},
     title = {Representations of solutions of first order linear canonical hyperbolic integro-differential equations},
     journal = {Journal of the Belarusian State University. Mathematics and Informatics},
     pages = {86--92},
     publisher = {mathdoc},
     volume = {1},
     year = {2024},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/BGUMI_2024_1_a7/}
}
TY  - JOUR
AU  - A. G. Agamaliyev
AU  - K. B. Mansimov
AU  - R. O. Mastaliev
TI  - Representations of solutions of first order linear canonical hyperbolic integro-differential equations
JO  - Journal of the Belarusian State University. Mathematics and Informatics
PY  - 2024
SP  - 86
EP  - 92
VL  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/BGUMI_2024_1_a7/
LA  - ru
ID  - BGUMI_2024_1_a7
ER  - 
%0 Journal Article
%A A. G. Agamaliyev
%A K. B. Mansimov
%A R. O. Mastaliev
%T Representations of solutions of first order linear canonical hyperbolic integro-differential equations
%J Journal of the Belarusian State University. Mathematics and Informatics
%D 2024
%P 86-92
%V 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/BGUMI_2024_1_a7/
%G ru
%F BGUMI_2024_1_a7
A. G. Agamaliyev; K. B. Mansimov; R. O. Mastaliev. Representations of solutions of first order linear canonical hyperbolic integro-differential equations. Journal of the Belarusian State University. Mathematics and Informatics, Tome 1 (2024), pp. 86-92. http://geodesic.mathdoc.fr/item/BGUMI_2024_1_a7/

[1] A. M. Nakhushev, Uravneniya matematicheskoi biologii, Vysshaya shkola, Moskva, 1995, +301 pp.

[2] A. M. Nakhushev, Zadachi so smescheniem dlya uravnenii v chastnykh proizvodnykh, Nauka, Moskva, 2006, +287 pp.

[3] G. M. Ostrovskii, Yu. M. Volin, Modelirovanie slozhnykh khimiko-tekhnologicheskikh skhem, Khimiya, Moskva, 1975, +312 pp.

[4] O. V. Vasilev, V. A. Terletskii, “K optimizatsii odnogo klassa upravlyaemykh sistem s raspredelennymi parametrami”, Optimizatsiya dinamicheskikh sistem, BGU, Minsk, 1978, 26–30

[5] A. I. Egorov, L. N. Znamenskaya, Vvedenie v teoriyu upravleniya sistemami s raspredelennymi parametrami, Lan, Sankt-Peterburg, 2017, +292 pp.

[6] A. V. Fursikov, “Optimalnoe upravlenie raspredelennymi sistemami”, Teoriya i prilozheniya, Nauchnaya kniga (Novosibirsk), 1999

[7] A. G. Agamaliev, K. B. Mansimov, R. O. Mastaliev, “O predstavlenii reshenii lineinykh kanonicheskikh giperbolicheskikh uravnenii pervogo poryadka”, Vestnik Bakinskogo universiteta. Seriya fiziko-matematicheskikh nauk, 3 (2017), 14–20

[8] S. Sh. Kadyrova, K. B. Mansimov, “Ob odnom predstavlenii reshenii sistemy upravleniya tipa Rossera”, Doklady Natsionalnoi akademii nauk Azerbaidzhana, 70(1) (2014), 15–18

[9] R. Roesser, “A discrete state-space model for linear image processing”, IEEE Transactions on Automatic Control, 20(1) (1975), 1–10 | DOI

[10] S. Sh. Kadyrova, K. B. Mansimov, “Ob optimalnosti kvaziosobykh upravlenii v odnoi granichnoi zadache upravleniya diskretnymi sistemami tipa Rossera”, Vestnik Tomskogo gosudarstvennogo universiteta. Upravlenie, vychislitelnaya tekhnika i informatika, 49 (2019), 4–13 | DOI

[11] R. F. Gabasov, F. M. Kirillova, Optimizatsiya lineinykh sistem. Metody funktsionalnogo analiza, Izdatelstvo BGU imeni VI Lenina, Minsk, 1973, +248 pp.