Representations of solutions of first order linear canonical hyperbolic integro-differential equations
Journal of the Belarusian State University. Mathematics and Informatics, Tome 1 (2024), pp. 86-92

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, we consider the boundary value problem for one class of linear hyperbolic integro-differential equations of the first order. With the help of analogies of the Cauchy matrix and the resolvent, representations of the solution of the considered boundary value problem are obtained.
Keywords: Linear hyperbolic integro-differential equations; representation of solutions; analog of the Cauchy matrix; second order Volterra equations
@article{BGUMI_2024_1_a7,
     author = {A. G. Agamaliyev and K. B. Mansimov and R. O. Mastaliev},
     title = {Representations of solutions of first order linear canonical hyperbolic integro-differential equations},
     journal = {Journal of the Belarusian State University. Mathematics and Informatics},
     pages = {86--92},
     publisher = {mathdoc},
     volume = {1},
     year = {2024},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/BGUMI_2024_1_a7/}
}
TY  - JOUR
AU  - A. G. Agamaliyev
AU  - K. B. Mansimov
AU  - R. O. Mastaliev
TI  - Representations of solutions of first order linear canonical hyperbolic integro-differential equations
JO  - Journal of the Belarusian State University. Mathematics and Informatics
PY  - 2024
SP  - 86
EP  - 92
VL  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/BGUMI_2024_1_a7/
LA  - ru
ID  - BGUMI_2024_1_a7
ER  - 
%0 Journal Article
%A A. G. Agamaliyev
%A K. B. Mansimov
%A R. O. Mastaliev
%T Representations of solutions of first order linear canonical hyperbolic integro-differential equations
%J Journal of the Belarusian State University. Mathematics and Informatics
%D 2024
%P 86-92
%V 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/BGUMI_2024_1_a7/
%G ru
%F BGUMI_2024_1_a7
A. G. Agamaliyev; K. B. Mansimov; R. O. Mastaliev. Representations of solutions of first order linear canonical hyperbolic integro-differential equations. Journal of the Belarusian State University. Mathematics and Informatics, Tome 1 (2024), pp. 86-92. http://geodesic.mathdoc.fr/item/BGUMI_2024_1_a7/