Restoration of the analytical task of the threshold $k$-valued function in the information protection node with incomplete data
Journal of the Belarusian State University. Mathematics and Informatics, Tome 3 (2023), pp. 63-71
Cet article a éte moissonné depuis la source Math-Net.Ru
This article considers the problem of restoring the threshold function in the information protection node from a input and output in the case when not all values are known. To solve this problem, it is proposed to use a geometric algorithm for characterising a partially known threshold $k$-valued function. The article proves the convergence of the algorithm at the final step; it is also shown that as a result of the algorithm, a certain threshold function will be constructed, which will coincide with this function at all known points.
Keywords:
Algorithm of learning of threshold functions; proof of convergence; threshold function; expansion coefficients; increase coefficients.
@article{BGUMI_2023_3_a5,
author = {A. V. Burdeliov},
title = {Restoration of the analytical task of the threshold $k$-valued function in the information protection node with incomplete data},
journal = {Journal of the Belarusian State University. Mathematics and Informatics},
pages = {63--71},
year = {2023},
volume = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/BGUMI_2023_3_a5/}
}
TY - JOUR AU - A. V. Burdeliov TI - Restoration of the analytical task of the threshold $k$-valued function in the information protection node with incomplete data JO - Journal of the Belarusian State University. Mathematics and Informatics PY - 2023 SP - 63 EP - 71 VL - 3 UR - http://geodesic.mathdoc.fr/item/BGUMI_2023_3_a5/ LA - ru ID - BGUMI_2023_3_a5 ER -
%0 Journal Article %A A. V. Burdeliov %T Restoration of the analytical task of the threshold $k$-valued function in the information protection node with incomplete data %J Journal of the Belarusian State University. Mathematics and Informatics %D 2023 %P 63-71 %V 3 %U http://geodesic.mathdoc.fr/item/BGUMI_2023_3_a5/ %G ru %F BGUMI_2023_3_a5
A. V. Burdeliov. Restoration of the analytical task of the threshold $k$-valued function in the information protection node with incomplete data. Journal of the Belarusian State University. Mathematics and Informatics, Tome 3 (2023), pp. 63-71. http://geodesic.mathdoc.fr/item/BGUMI_2023_3_a5/
[1] A. V. Burdelev, V. G. Nikonov, “O novom algoritme kharakterizatsii k-znachnykh porogovykh funktsii”, Computational Nanotechnology, 1 (2017), 7–14
[2] A. V. Burdelev, “O skhodimosti novogo algoritma kharakterizatsii k-znachnykh porogovykh funktsii”, Prikladnaya diskretnaya matematika, 39 (2018), 107–115 | DOI | MR | Zbl
[3] A. V. Burdelev, V. G. Nikonov, “O postroenii analiticheskogo zadaniya k-znachnoi porogovoi funktsii”, Computational Nanotechnology, 2 (2015), 5–13
[4] V. G. Nikonov, N. V. Nikonov, “Osobennosti porogovykh predstavlenii k-znachnykh funktsii”, Trudy po diskretnoi matematike, 11(1) (2008), 60–85
[5] M. Minskii, S. Peipert, Perseptrony, Mir, Moskva, 1971, 261 pp.