Restoration of the analytical task of the threshold $k$-valued function in the information protection node with incomplete data
Journal of the Belarusian State University. Mathematics and Informatics, Tome 3 (2023), pp. 63-71.

Voir la notice de l'article provenant de la source Math-Net.Ru

This article considers the problem of restoring the threshold function in the information protection node from a input and output in the case when not all values are known. To solve this problem, it is proposed to use a geometric algorithm for characterising a partially known threshold $k$-valued function. The article proves the convergence of the algorithm at the final step; it is also shown that as a result of the algorithm, a certain threshold function will be constructed, which will coincide with this function at all known points.
Keywords: Algorithm of learning of threshold functions; proof of convergence; threshold function; expansion coefficients; increase coefficients.
@article{BGUMI_2023_3_a5,
     author = {A. V. Burdeliov},
     title = {Restoration of the analytical task of the threshold $k$-valued function in the information protection node with incomplete data},
     journal = {Journal of the Belarusian State University. Mathematics and Informatics},
     pages = {63--71},
     publisher = {mathdoc},
     volume = {3},
     year = {2023},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/BGUMI_2023_3_a5/}
}
TY  - JOUR
AU  - A. V. Burdeliov
TI  - Restoration of the analytical task of the threshold $k$-valued function in the information protection node with incomplete data
JO  - Journal of the Belarusian State University. Mathematics and Informatics
PY  - 2023
SP  - 63
EP  - 71
VL  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/BGUMI_2023_3_a5/
LA  - ru
ID  - BGUMI_2023_3_a5
ER  - 
%0 Journal Article
%A A. V. Burdeliov
%T Restoration of the analytical task of the threshold $k$-valued function in the information protection node with incomplete data
%J Journal of the Belarusian State University. Mathematics and Informatics
%D 2023
%P 63-71
%V 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/BGUMI_2023_3_a5/
%G ru
%F BGUMI_2023_3_a5
A. V. Burdeliov. Restoration of the analytical task of the threshold $k$-valued function in the information protection node with incomplete data. Journal of the Belarusian State University. Mathematics and Informatics, Tome 3 (2023), pp. 63-71. http://geodesic.mathdoc.fr/item/BGUMI_2023_3_a5/

[1] A. V. Burdelev, V. G. Nikonov, “O novom algoritme kharakterizatsii k-znachnykh porogovykh funktsii”, Computational Nanotechnology, 1 (2017), 7–14

[2] A. V. Burdelev, “O skhodimosti novogo algoritma kharakterizatsii k-znachnykh porogovykh funktsii”, Prikladnaya diskretnaya matematika, 39 (2018), 107–115 | DOI | MR | Zbl

[3] A. V. Burdelev, V. G. Nikonov, “O postroenii analiticheskogo zadaniya k-znachnoi porogovoi funktsii”, Computational Nanotechnology, 2 (2015), 5–13

[4] V. G. Nikonov, N. V. Nikonov, “Osobennosti porogovykh predstavlenii k-znachnykh funktsii”, Trudy po diskretnoi matematike, 11(1) (2008), 60–85

[5] M. Minskii, S. Peipert, Perseptrony, Mir, Moskva, 1971, 261 pp.