Thermo force loading of an elastic-plastic a three-layer plate
Journal of the Belarusian State University. Mathematics and Informatics, Tome 3 (2023), pp. 42-52.

Voir la notice de l'article provenant de la source Math-Net.Ru

The formulation of the boundary value problem of deformation of a circular three-layer plate in its plane under the action of an axisymmetric load and heat flow is herein given. The deformation of materials of thin bearing layers obeys the hypotheses of the theory of small elastic-plastic deformations. The relatively thick filler is assumed to be non-linearly elastic. A system of non-linear differential equilibrium equations is obtained. To derive it, the Lagrange’s variational principle was used. The corresponding iterative solution is obtained by direct integration. Numerical approbation of the analytical solution is carried out.
Keywords: Circular three-layer plate; non-axisymmetric load; movement; plasticity.
@article{BGUMI_2023_3_a3,
     author = {E. I. Starovoitov and M. A. Zhuravkov and A. V. Nesterovich},
     title = {Thermo force loading of an elastic-plastic a three-layer plate},
     journal = {Journal of the Belarusian State University. Mathematics and Informatics},
     pages = {42--52},
     publisher = {mathdoc},
     volume = {3},
     year = {2023},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/BGUMI_2023_3_a3/}
}
TY  - JOUR
AU  - E. I. Starovoitov
AU  - M. A. Zhuravkov
AU  - A. V. Nesterovich
TI  - Thermo force loading of an elastic-plastic a three-layer plate
JO  - Journal of the Belarusian State University. Mathematics and Informatics
PY  - 2023
SP  - 42
EP  - 52
VL  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/BGUMI_2023_3_a3/
LA  - ru
ID  - BGUMI_2023_3_a3
ER  - 
%0 Journal Article
%A E. I. Starovoitov
%A M. A. Zhuravkov
%A A. V. Nesterovich
%T Thermo force loading of an elastic-plastic a three-layer plate
%J Journal of the Belarusian State University. Mathematics and Informatics
%D 2023
%P 42-52
%V 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/BGUMI_2023_3_a3/
%G ru
%F BGUMI_2023_3_a3
E. I. Starovoitov; M. A. Zhuravkov; A. V. Nesterovich. Thermo force loading of an elastic-plastic a three-layer plate. Journal of the Belarusian State University. Mathematics and Informatics, Tome 3 (2023), pp. 42-52. http://geodesic.mathdoc.fr/item/BGUMI_2023_3_a3/

[1] M. A. Zhuravkov, E. I. Starovoitov, Matematicheskie modeli mekhaniki tverdykh tel, BGU, Minsk, 2021, 535 pp.

[2] L. Aghalovyan, Asymptotic theory of anisotropic plates and shells, World Scientific Publishing, Singapore, 2015, XV+360 pp. | DOI

[3] E. Carrera, F. A. Fazzolari, M. Cinefra, Thermal stress analysis of composite beams, plates and shells: computational modelling and applications, Academic Press, Amsterdam, 2016, XXXI+408 pp.

[4] A. G. Gorshkov, E. I. Starovoitov, A. V. Yarovaya, “Harmonic vibrations of a viscoelastoplastic sandwich cylindrical shell”, International Applied Mechanics, 37(9) (2001), 1196–1203 | DOI | Zbl

[5] E. I. Starovoitov, D. V. Leonenko, A. V. Yarovaya, “Vibrations of round three-layer plates under the action of distributed local loads”, Strength of Materials, 34(5) (2002), 474–481 | DOI

[6] E. I. Starovoitov, D. V. Leonenko, A. V. Yarovaya, “Vibrations of circular sandwich plates under resonance loads”, International Applied Mechanics, 39(12) (2003), 1458–1463 | DOI | Zbl

[7] E. I. Starovoitov, D. V. Leonenko, D. V. Tarlakovsky, “Resonance vibrations of a circular composite plates on an elastic foundation”, Mechanics of Composite Materials, 51(5) (2015), 561–570 | DOI

[8] G. I. Mikhasev, V. A. Eremeyev, K. Wilde, S. S. Maevskaya, “Assessment of dynamic characteristics of thin cylindrical sandwich panels with magnetorheological core”, Journal of Intelligent Material Systems and Structures, 30(18–19) (2019), 2748–2769 | DOI

[9] G. I. Mikhasev, H. Altenbach, Thin-walled laminated structures: buckling, vibrations and their suppression, Springer, Cham, 2019, 4+157–198 pp. | DOI | MR | Zbl

[10] V. N. Bakulin, E. N. Volkov, A. I. Simonov, “Dynamic stability of a cylindrical shell under alternating axial external pressure”, Russian Aeronautics, 60(4) (2017), 508–513 | DOI

[11] V. N. Bakulin, D. A. Boitsova, AYa. Nedbai, “Parametric resonance of a three-layered cylindrical composite rib-stiffened shell”, Mechanics of Composite Materials, 57(5) (2021), 623–634 | DOI

[12] J. Kaplunov, L. Prikazchikova, M. Alkinidri, “Antiplane shear of an asymmetric sandwich plate”, Continuum Mechanics and Thermodynamics, 33(4) (2021), 1247–1262 | DOI | MR

[13] J. Kaplunov, D. A. Prikazchikov, L. A. Prikazchikova, “Dispersion of elastic waves in a strongly inhomogeneous three-layered plate”, International Journal of Solids and Structures, 113–114 (2017), 169–179 | DOI

[14] D. V. Kondratov, L. I. Mogilevich, V. S. Popov, A. A. Popova, “Hydroelastic oscillations of a circular plate, resting on Winkler foundation”, Journal of Physics. Conference Series, 944 (2018), 012057 | DOI

[15] L. I. Mogilevich, V. S. Popov, A. A. Popova, A. V. Christoforova, “Mathematical modeling of hydroelastic oscillations of the stamp and the plate, resting on Pasternak foundation”, Journal of Physics. Conference Series, 944 (2018), 012081 | DOI

[16] G. V. Fedotenkov, D. V. Tarlakovsky, Y. A. Vahterova, “Identification of non-stationary load upon Timoshenko beam”, Lobachevskii Journal of Mathematics, 40(4) (2019), 439–447 | DOI | MR | Zbl

[17] D. V. Tarlakovskii, G. V. Fedotenkov, “Two-dimensional nonstationary contact of elastic cylindrical or spherical shells”, Journal of Machinery Manufacture and Reliability, 43(2) (2014), 145–152 | DOI

[18] YeM. Suvorov, D. V. Tarlakovskii, G. V. Fedotenkov, “The plane problem of the impact of a rigid body on a half-space modelled by a Cosserat medium”, Journal of Applied Mathematics and Mechanics, 76(5) (2012), 511–518 | DOI | MR

[19] V. N. Paimushin, R. K. Gazizullin, “Static and monoharmonic acoustic impact on a laminated plate”, Mechanics of Composite Materials, 53(3) (2017), 283–304 | DOI

[20] V. N. Paimushin, V. A. Firsov, V. M. Shishkin, “Modeling the dynamic response of a carbon-fiber-reinforced plate at resonance vibrations considering the internal friction in the material and the external aerodynamic damping”, Mechanics of Composite Materials, 53(4) (2017), 425–440 | DOI

[21] V. N. Paimushin, “Theory of moderately large deflections of sandwich shells having a transversely soft core and reinforced along their contour”, Mechanics of Composite Materials, 53(1) (2017), 1–16 | DOI

[22] I. Ivañez, M. M. Moure, S. K. Garcia-Castillo, S. Sanchez-Saez, “The oblique impact response of composite sandwich plates”, Composite Structures, 133 (2015), 1127–1136 | DOI

[23] N. Grover, B. N. Singh, D. K. Maiti, “An inverse trigonometric shear deformation theory for supersonic flutter characteristics of multilayered composite plates”, Aerospace Science and Technology, 52 (2016), 41–51 | DOI

[24] E. I. Starovoitov, D. V. Leonenko, “Deformation of a three-layer elastoplastic beam on an elastic foundation”, Mechanics of Solids, 46(2) (2011), 291–298 | DOI

[25] E. I. Starovoitov, D. V. Leonenko, A. V. Yarovaya, “Elastoplastic bending of a sandwich bar on an elastic foundation”, International Applied Mechanics, 43(4) (2007), 451–459 | DOI | MR | Zbl

[26] E. I. Starovoitov, M. A. Zhuravkov, P. F. Pronina, “Bending of an elastic three-layer plate with a hole connected to the soil foundation”, News of the National Academy of Sciences of the Republic of Kazakhstan. Series of Geology and Technical Sciences, 1 (2021), 164–171 | DOI

[27] Z. Xie, “An approximate solution to the plastic indentation of circular sandwich panels”, Mechanics of Composite Materials, 54(2) (2018), 243–250 | DOI

[28] A. Kudin, MAV. Al-Omari, BGM. Al-Athamneh, HKM. Al-Athamneh, “Bending and buckling of circular sandwich plates with the nonlinear elastic core material”, International Journal of Mechanical Engineering and Information Technology, 3(8) (2015), 1487–1493 | DOI

[29] L. Skec, G. Jelenic, “Analysis of a geometrically exact multi-layer beam with a rigid interlayer connection”, Acta Mechanica, 225(2) (2014), 523–541 | DOI | MR | Zbl

[30] M. Pradhan, P. R. Dash, P. K. Pradhan, “Static and dynamic stability analysis of an asymmetric sandwich beam resting on a variable Pasternak foundation subjected to thermal gradient”, Meccanica, 51(3) (2016), 725–739 | DOI | MR | Zbl

[31] Zhihua. Wang, Guoxing. Lu, Feng. Zhu, Longmao. Zhao, “Load-carrying capacity of circular sandwich plates at large deflection”, Journal of Engineering Mechanics, 143(9) (2017), 04017057 | DOI

[32] H. V. Zadeh, M. Tahani, “Analytical bending analysis of a circular sandwich plate under distributed load”, International Journal of Recent Advances in Mechanical Engineering, 6(1) (2017), 1–10 | DOI

[33] L. Yang, O. Harrysson, H. West, D. Cormier, “A comparison of bending properties for cellular core sandwich panels”, Materials Sciences and Applications, 4(8) (2013), 471–477 | DOI

[34] A. V. Nesterovich, “Deformirovanie trekhsloinoi krugovoi plastiny pri kosinusoidalnom nagruzhenii v svoei ploskosti”, Problemy fiziki, matematiki i tekhniki, 1 (2020), 85–90

[35] E. I. Starovoitov, A. V. Nesterovich, “Neosesimmetrichnoe nagruzhenie uprugoplasticheskoi trekhsloinoi plastiny v svoei ploskosti”, Zhurnal Belorusskogo gosudarstvennogo universiteta. Matematika. Informatika, 2 (2022), 57–69 | DOI

[36] A. A. Ilyushin, Plastichnost. Chast 1, Uprugoplasticheskie deformatsii, Gosudarstvennoe izdatelstvo tekhniko-teoreticheskoi literatury, Moskva, 1948, 376 pp. | MR