Description of local multipliers on finite-dimensional associative algebras
Journal of the Belarusian State University. Mathematics and Informatics, Tome 3 (2023), pp. 32-41.

Voir la notice de l'article provenant de la source Math-Net.Ru

In 2020 F. Arzikulov and N. Umrzaqov introduced the concept of a (linear) local multiplier. They proved that every local left (right) multiplier on the matrix ring over a division ring is a left (right, respectively) multiplier. This paper is devoted to (linear) local weak left (right) multipliers on $5$-dimensional naturally graded $2$-filiform non-split associative algebras. An algorithm for obtaining a common form of the matrices of the weak left (right) multipliers on the $5$-dimensional naturally graded $2$-filiform non-split associative algebras $\lambda^{5}_{1}$ and $\lambda^{5}_{2}$, constructed by I. Karimjanov and M. Ladra, is developed. An algorithm for obtaining a general form of the matrices of the local weak left (right) multipliers on the algebras $\lambda^{5}_{1}$ and $\lambda^{5}_{2}$ is also developed. It turns out that the associative algebras $\lambda^{5}_{1}$ and $\lambda^{5}_{2}$ have a local weak left (right) multiplier that is not a weak left (right, respectively) multiplier.
Keywords: Associative algebra; left (right) multiplier; derivation; local derivation; local left (right) multiplier.
@article{BGUMI_2023_3_a2,
     author = {F. N. Arzikulov and O. Samsaqov},
     title = {Description of local multipliers on finite-dimensional associative algebras},
     journal = {Journal of the Belarusian State University. Mathematics and Informatics},
     pages = {32--41},
     publisher = {mathdoc},
     volume = {3},
     year = {2023},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/BGUMI_2023_3_a2/}
}
TY  - JOUR
AU  - F. N. Arzikulov
AU  - O. Samsaqov
TI  - Description of local multipliers on finite-dimensional associative algebras
JO  - Journal of the Belarusian State University. Mathematics and Informatics
PY  - 2023
SP  - 32
EP  - 41
VL  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/BGUMI_2023_3_a2/
LA  - ru
ID  - BGUMI_2023_3_a2
ER  - 
%0 Journal Article
%A F. N. Arzikulov
%A O. Samsaqov
%T Description of local multipliers on finite-dimensional associative algebras
%J Journal of the Belarusian State University. Mathematics and Informatics
%D 2023
%P 32-41
%V 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/BGUMI_2023_3_a2/
%G ru
%F BGUMI_2023_3_a2
F. N. Arzikulov; O. Samsaqov. Description of local multipliers on finite-dimensional associative algebras. Journal of the Belarusian State University. Mathematics and Informatics, Tome 3 (2023), pp. 32-41. http://geodesic.mathdoc.fr/item/BGUMI_2023_3_a2/

[1] P. Gabriel, “Finite representation type is open”, Representations of algebras. Proceedings of the International conference, Springer-Verlag, Berlin, 1975, 132–155 | DOI | MR

[2] G. Mazzola, “The algebraic and geometric classification of associative algebras of dimension five”, Manuscripta Mathematica, 27(1) (1979), 81–101 | DOI | MR | Zbl

[3] O. C. Hazlett, “On the classification and invariantive characterization of nilpotent algebras”, American Journal of Mathematics, 38(2) (1916), 109–138 | DOI | MR

[4] F. N. Arzikulov, N. M. Umrzaqov, “Local mappings generated by a multiplication on rings of matrices”, Mathematical Notes, 107(5–6) (2020), 887–897 | DOI | MR | Zbl

[5] A. M. Gleason, “A characterization of maximal ideals”, Journal d’Analyse Mathématique, 19 (1967), 171–172 | DOI | MR | Zbl

[6] J. Kahane, W. Zelazko, “A characterization of maximal ideals in commutative Banach algebras”, Studia Mathematica, 29(3) (1968), 339–343 | DOI | MR | Zbl

[7] R. V. Kadison, “Local derivations”, Journal of Algebra, 130(2) (1990), 494–509 | DOI | MR | Zbl

[8] D. R. Larson, A. R. Sourour, “Local derivations and local automorphisms of B(X)”, Operator theory. Operator algebras and applications. Part 2, American Mathematical Society, Providence, 1990, 187–194 | DOI | MR

[9] B. E. Johnson, “Local derivations on C-algebras are derivations”, Transactions of the American Mathematical Society, 353(1) (2001), 313–325 | DOI | MR | Zbl

[10] I. A. Karimjanov, M. Ladra, “Some classes of nilpotent associative algebras”, Mediterranean Journal of Mathematics, 17(2) (2020), 70 | DOI | MR | Zbl