On the numerical solution to a weakly singular integral equation of the second kind by the method of orthogonal polynomials
Journal of the Belarusian State University. Mathematics and Informatics, Tome 2 (2023), pp. 55-62.

Voir la notice de l'article provenant de la source Math-Net.Ru

It is considered a singular integral equation with a logarithmic singularity. Such equations are used in the mathematical model of electromagnetic wave scattering. Three computational schemes are constructed for the numerical analysis of its solutions from different Muskhelishvili functional classes. They are based on the representation of a part of the determined function as a linear combination of Chebyshev polynomials of the first kind. After minor transformations and application of the known spectral relations for the singular integral, simple analytical expressions for the singular component of the equation are obtained. The solution is expanded in the basis of Chebyshev polynomials. The expansion coefficients are calculated as the solution of the corresponding systems of linear algebraic equations. The results of numerical experiments show that on a grid of 15–20 nodes, the error of the approximation does not exceed the computational error.
Keywords: integro-differential equation; numerical solution; method of orthogonal polynomials.
@article{BGUMI_2023_2_a5,
     author = {G. A. Rasolko and S. M. Sheshko},
     title = {On the numerical solution to a weakly singular integral equation of the second kind by the method of orthogonal polynomials},
     journal = {Journal of the Belarusian State University. Mathematics and Informatics},
     pages = {55--62},
     publisher = {mathdoc},
     volume = {2},
     year = {2023},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/BGUMI_2023_2_a5/}
}
TY  - JOUR
AU  - G. A. Rasolko
AU  - S. M. Sheshko
TI  - On the numerical solution to a weakly singular integral equation of the second kind by the method of orthogonal polynomials
JO  - Journal of the Belarusian State University. Mathematics and Informatics
PY  - 2023
SP  - 55
EP  - 62
VL  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/BGUMI_2023_2_a5/
LA  - ru
ID  - BGUMI_2023_2_a5
ER  - 
%0 Journal Article
%A G. A. Rasolko
%A S. M. Sheshko
%T On the numerical solution to a weakly singular integral equation of the second kind by the method of orthogonal polynomials
%J Journal of the Belarusian State University. Mathematics and Informatics
%D 2023
%P 55-62
%V 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/BGUMI_2023_2_a5/
%G ru
%F BGUMI_2023_2_a5
G. A. Rasolko; S. M. Sheshko. On the numerical solution to a weakly singular integral equation of the second kind by the method of orthogonal polynomials. Journal of the Belarusian State University. Mathematics and Informatics, Tome 2 (2023), pp. 55-62. http://geodesic.mathdoc.fr/item/BGUMI_2023_2_a5/

[1] V. V. Panasyuk, M. P. Savruk, Z. T. Nazarchuk, Metod singulyarnykh integralnykh uravnenii v dvumernykh zadachakh difraktsii, Naukova dumka, Kiev, 1984, 344 pp. | MR

[2] S. M. Sheshko, “Chislennoe reshenie odnogo slabosingulyarnogo integralnogo uravneniya metodom ortogonalnykh mnogochlenov”, Zhurnal Belorusskogo gosudarstvennogo universiteta. Matematika. Informatika, 3 (2021), 98–103 | DOI | MR

[3] G. Vainikko, A. Pedas, “The properties of solutions of weakly singular integral equations”, Journal of the Australian Mathematical Society. Series B, Applied Mathematics, 22(4) (1981), 419–430 | DOI | MR | Zbl

[4] G. Vainikko, P. Uba, “Apiecewise polynomial approximation to the solution of an integral equation with weakly singular kernel”, Journal of the Australian Mathematical Society. Series B, Applied Mathematics, 22(4) (1981), 431–438 | DOI | MR | Zbl

[5] P. M. Anselone, W. Krabs, “Approximate solution of weakly singular integral equations”, Journal of Integral Equations, 1(1) (1979), 61–75 | Zbl

[6] P. M. Anselone, “Singularity subtraction in the numerical solution of integral equations”, Journal of the Australian Mathematical Society. Series B, Applied Mathematics, 22(4) (1981), 408–418 | DOI | MR | Zbl

[7] G. Ya. Popov, “Ob odnom priblizhennom sposobe resheniya nekotorykh ploskikh kontaktnykh zadach teorii uprugosti”, Izvestiya Akademii nauk Armyanskoi SSR. Seriya fiziko-matematicheskikh nauk, 14(3) (1961), 81–96 | Zbl

[8] N. I. Muskhelishvili, Singulyarnye integralnye uravneniya: granichnye zadachi teorii funktsii i nekotorye ikh prilozheniya k matematicheskoi fizike. 3-e izdanie, Nauka, Moskva, 1968, 512 pp. | MR

[9] G. A. Rasolko, V. M. Volkov, “Chislennoe reshenie odnogo slabo singulyarnogo integralnogo uravneniya metodom ortogonalnykh mnogochlenov v raznykh klassakh funktsii”, Differentsialnye uravneniya, 58(4) (2022), 545–553 | DOI

[10] S. Pashkovskii, Vychislitelnye primeneniya mnogochlenov i ryadov Chebysheva, Nauka, Moskva, 1983, 384 pp. | MR