Voir la notice de l'article provenant de la source Math-Net.Ru
@article{BGUMI_2023_2_a3, author = {V. P. Kirlitsa}, title = {$D$- and $A$-optimal designs of experiments for trigonometric regression with heteroscedastic observations}, journal = {Journal of the Belarusian State University. Mathematics and Informatics}, pages = {35--44}, publisher = {mathdoc}, volume = {2}, year = {2023}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/BGUMI_2023_2_a3/} }
TY - JOUR AU - V. P. Kirlitsa TI - $D$- and $A$-optimal designs of experiments for trigonometric regression with heteroscedastic observations JO - Journal of the Belarusian State University. Mathematics and Informatics PY - 2023 SP - 35 EP - 44 VL - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/BGUMI_2023_2_a3/ LA - ru ID - BGUMI_2023_2_a3 ER -
%0 Journal Article %A V. P. Kirlitsa %T $D$- and $A$-optimal designs of experiments for trigonometric regression with heteroscedastic observations %J Journal of the Belarusian State University. Mathematics and Informatics %D 2023 %P 35-44 %V 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/BGUMI_2023_2_a3/ %G ru %F BGUMI_2023_2_a3
V. P. Kirlitsa. $D$- and $A$-optimal designs of experiments for trigonometric regression with heteroscedastic observations. Journal of the Belarusian State University. Mathematics and Informatics, Tome 2 (2023), pp. 35-44. http://geodesic.mathdoc.fr/item/BGUMI_2023_2_a3/
[1] S. M. Ermakov, A. A. Zhiglyavskii, Matematicheskaya teoriya optimalnogo eksperimenta, Nauka, Moskva, 1987, 320 pp.
[2] V. V. Fedorov, Teoriya optimalnogo eksperimenta (planirovanie regressionnykh eksperimentov), Fiziko-matematicheskaya biblioteka inzhenera, Nauka, Moskva, 1971, 312 pp.
[3] P. G. Hoel, “Minimax designs in two dimension regression”, The Annals of Mathematical Statistics, 36(4) (1965), 1097–1106 | DOI | MR | Zbl
[4] V. P. Kirlitsa, “D-optimalnye plany eksperimentov dlya trigonometricheskoi regressii na otrezke s neravnotochnymi nablyudeniyami”, Zhurnal Belorusskogo gosudarstvennogo universiteta. Matematika. Informatika, 3 (2020), 80–85 | DOI | MR
[5] S. M. Ermakov, V. Z. Brodskii, A. A. Zhiglyavskii, V. P. Kozlov, M. B. Malyutov, V. B. Melas, Matematicheskaya teoriya planirovaniya eksperimenta, Spravochnaya matematicheskaya biblioteka, Nauka, Moskva, 1983, 392 pp. | MR