Functor properties of the $\Omega$-saturation of a topological space
Journal of the Belarusian State University. Mathematics and Informatics, Tome 1 (2023), pp. 31-37.

Voir la notice de l'article provenant de la source Math-Net.Ru

Herein, we consider the $\Omega$-saturations of a topological space $X$, which are canonically embedded in the Wallman extension $\omega X$ and are a weakening of the concept of the countably-compactification in the Morita sense. We find necessary and sufficient conditions of the continious extension of a map $X \xrightarrow{f} Y$ to $\Omega$-saturations of the spaces $X$ and $Y$, as well as sufficiently wide categories on which the covariant functors arising in this case are defined.
Keywords: saturation of a topological space; countably-compactification in the Morita sense; Wallman compactification.
@article{BGUMI_2023_1_a2,
     author = {A. S. Biadrytski and V. L. Timokhovich},
     title = {Functor properties of the $\Omega$-saturation of a topological space},
     journal = {Journal of the Belarusian State University. Mathematics and Informatics},
     pages = {31--37},
     publisher = {mathdoc},
     volume = {1},
     year = {2023},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/BGUMI_2023_1_a2/}
}
TY  - JOUR
AU  - A. S. Biadrytski
AU  - V. L. Timokhovich
TI  - Functor properties of the $\Omega$-saturation of a topological space
JO  - Journal of the Belarusian State University. Mathematics and Informatics
PY  - 2023
SP  - 31
EP  - 37
VL  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/BGUMI_2023_1_a2/
LA  - ru
ID  - BGUMI_2023_1_a2
ER  - 
%0 Journal Article
%A A. S. Biadrytski
%A V. L. Timokhovich
%T Functor properties of the $\Omega$-saturation of a topological space
%J Journal of the Belarusian State University. Mathematics and Informatics
%D 2023
%P 31-37
%V 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/BGUMI_2023_1_a2/
%G ru
%F BGUMI_2023_1_a2
A. S. Biadrytski; V. L. Timokhovich. Functor properties of the $\Omega$-saturation of a topological space. Journal of the Belarusian State University. Mathematics and Informatics, Tome 1 (2023), pp. 31-37. http://geodesic.mathdoc.fr/item/BGUMI_2023_1_a2/

[1] I. Yu. Goldovt, V. L. Timokhovich, “Nasyscheniya topologicheskikh prostranstv i problema Mority”, Doklady Akademii nauk BSSR, 21(9) (1977), 777–780 | MR | Zbl

[2] K. Morita, “Products of normal spaces with metric spaces”, Mathematische Annalen, 154(4) (1964), 365–382 | DOI | MR | Zbl

[3] K. Morita, “Countably-compactifiable spaces”, Science Reports of the Tokyo Kyoiku Daigaku. Section A, 12(313/328) (1973), 7–15 | MR | Zbl

[4] D. K. Burke, Douwen. van, On countably compact extensions of normal locally compact M-spaces: Set-theoretic topology, Academic Press, New York, 1977, 89 pp. | DOI | MR

[5] G. O. Kukrak, V. L. Timokhovich, “O schetnokompaktifitsiruemosti v smysle Mority”, Zhurnal Belorusskogo gosudarstvennogo universiteta. Matematika. Informatika, 1 (2021), 46–53 | DOI | MR

[6] D. Harris, “The Wallman compactification as a functor”, General Topology and its Applications, 1(3) (1971), 273–281 | DOI | MR | Zbl

[7] G. O. Kukrak, V. L. Timokhovich, “O predele obratnogo spektra eksponentsialnykh prostranstv”, Vestnik BGU. Seriya 1. Fizika. Matematika. Informatika, 1 (2001), 51–55 | MR | Zbl

[8] R. Engelking, Obschaya topologiya, Mir, Moskva, 1986, 752 pp. | MR