Functor properties of the $\Omega$-saturation of a topological space
Journal of the Belarusian State University. Mathematics and Informatics, Tome 1 (2023), pp. 31-37

Voir la notice de l'article provenant de la source Math-Net.Ru

Herein, we consider the $\Omega$-saturations of a topological space $X$, which are canonically embedded in the Wallman extension $\omega X$ and are a weakening of the concept of the countably-compactification in the Morita sense. We find necessary and sufficient conditions of the continious extension of a map $X \xrightarrow{f} Y$ to $\Omega$-saturations of the spaces $X$ and $Y$, as well as sufficiently wide categories on which the covariant functors arising in this case are defined.
Keywords: saturation of a topological space; countably-compactification in the Morita sense; Wallman compactification.
@article{BGUMI_2023_1_a2,
     author = {A. S. Biadrytski and V. L. Timokhovich},
     title = {Functor properties of the $\Omega$-saturation of a topological space},
     journal = {Journal of the Belarusian State University. Mathematics and Informatics},
     pages = {31--37},
     publisher = {mathdoc},
     volume = {1},
     year = {2023},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/BGUMI_2023_1_a2/}
}
TY  - JOUR
AU  - A. S. Biadrytski
AU  - V. L. Timokhovich
TI  - Functor properties of the $\Omega$-saturation of a topological space
JO  - Journal of the Belarusian State University. Mathematics and Informatics
PY  - 2023
SP  - 31
EP  - 37
VL  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/BGUMI_2023_1_a2/
LA  - ru
ID  - BGUMI_2023_1_a2
ER  - 
%0 Journal Article
%A A. S. Biadrytski
%A V. L. Timokhovich
%T Functor properties of the $\Omega$-saturation of a topological space
%J Journal of the Belarusian State University. Mathematics and Informatics
%D 2023
%P 31-37
%V 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/BGUMI_2023_1_a2/
%G ru
%F BGUMI_2023_1_a2
A. S. Biadrytski; V. L. Timokhovich. Functor properties of the $\Omega$-saturation of a topological space. Journal of the Belarusian State University. Mathematics and Informatics, Tome 1 (2023), pp. 31-37. http://geodesic.mathdoc.fr/item/BGUMI_2023_1_a2/