Investigation in general of the behaviour of the trajectories of a predator – prey system
Journal of the Belarusian State University. Mathematics and Informatics, Tome 1 (2023), pp. 20-30.

Voir la notice de l'article provenant de la source Math-Net.Ru

By the methods of the classical qualitative theory of dynamical systems on the plane, the problem of constructing a phase portrait of Kolmogorov’s predator – prey system has been solved in general. Possible topological structures of this model are considered for six cases of coefficient conditions with positive values of three parameters. The phase portraits in the Poincare disk are constructed by dividing the set of values of one of the parameters into intervals. The values of this parameter are found at which the self-oscillation mode is possible in the system. It is shown that a weak focus of order 1 (multiplicity 1) is not surrounded by closed trajectories. Based on the analysis of the location of the main isoclines of the system on the entire phase plane, exclusively geometrically, the topological structure of a complex equilibrium state at infinity is established without relying on known analytical (more time-consuming) methods.
Keywords: A. N. Kolmogorov; predator – prey system; global phase portrait; Poincare disk; equilibrium states; limit cycle.
@article{BGUMI_2023_1_a1,
     author = {A. D. Ushkho and D. S. Ushkho},
     title = {Investigation in general of the behaviour of the trajectories of a predator {\textendash} prey system},
     journal = {Journal of the Belarusian State University. Mathematics and Informatics},
     pages = {20--30},
     publisher = {mathdoc},
     volume = {1},
     year = {2023},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/BGUMI_2023_1_a1/}
}
TY  - JOUR
AU  - A. D. Ushkho
AU  - D. S. Ushkho
TI  - Investigation in general of the behaviour of the trajectories of a predator – prey system
JO  - Journal of the Belarusian State University. Mathematics and Informatics
PY  - 2023
SP  - 20
EP  - 30
VL  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/BGUMI_2023_1_a1/
LA  - ru
ID  - BGUMI_2023_1_a1
ER  - 
%0 Journal Article
%A A. D. Ushkho
%A D. S. Ushkho
%T Investigation in general of the behaviour of the trajectories of a predator – prey system
%J Journal of the Belarusian State University. Mathematics and Informatics
%D 2023
%P 20-30
%V 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/BGUMI_2023_1_a1/
%G ru
%F BGUMI_2023_1_a1
A. D. Ushkho; D. S. Ushkho. Investigation in general of the behaviour of the trajectories of a predator – prey system. Journal of the Belarusian State University. Mathematics and Informatics, Tome 1 (2023), pp. 20-30. http://geodesic.mathdoc.fr/item/BGUMI_2023_1_a1/

[1] E. Diz-Pita, J. Llibre, M. V. Otero-Espinar, “Global phase portraits of a predator – prey system”, Electronic Journal of Qualitative Theory of Differential Equations, 16 (2022), 1–13 | DOI | MR

[2] N. N. Bautin, E. A. Leontovich, Metody i priemy kachestvennogo issledovaniya dinamicheskikh sistem na ploskosti, Nauka, Moskva, 1976, 496 pp.

[3] N. F. Otrokov, Analiticheskie integraly i predelnye tsikly, Volgo-Vyatskoe knizhnoe izdatelstvo, Gorkii, 1972, 216 pp.

[4] A. A. Andronov, E. A. Leontovich, I. I. Gordon, A. G. Maier, Kachestvennaya teoriya dinamicheskikh sistem vtorogo poryadka, Nauka, Moskva, 1966, 568 pp. | MR

[5] A. A. Andronov, E. A. Leontovich, I. I. Gordon, A. G. Maier, Teoriya bifurkatsii dinamicheskikh sistem na ploskosti, Nauka, Moskva, 1967, 488 pp. | MR

[6] A. Puankare, O krivykh, opredelyaemykh differentsialnymi uravneniyami, OGIZ, Moskva, 1947, 392 pp.

[7] M. Frommer, “Integralnye krivye obyknovennogo differentsialnogo uravneniya pervogo poryadka v okrestnosti osoboi tochki, imeyuschei ratsionalnyi kharakter”, Uspekhi matematicheskikh nauk, 9 (1941), 212–253

[8] Lii-Perng. Liou, Kuo-Shung. Cheng, “On the uniqueness of a limit cycle for a predator – prey system”, SIAM Journal on Mathematical Analysis, 19(4) (1988), 867–878 | DOI | MR | Zbl

[9] A. P. Sadovskii, T. V. Scheglova, “Tsentry kubicheskoi sistemy s odinnadtsatyu parametrami”, Vestnik BGU. Seriya 1. Fizika. Matematika. Informatika, 1 (2011), 71–75 | Zbl

[10] I. N. Sidorenko, “Predelnye tsikly normalnogo razmera nekotorykh klassov kvadratichnykh sistem na ploskosti”, Vestnik BGU. Seriya 1. Fizika. Matematika. Informatika, 3 (2008), 63–68 | Zbl