Algebraic equations and polynomials over the ring of $p$-complex numbers
Journal of the Belarusian State University. Mathematics and Informatics, Tome 3 (2022), pp. 37-44.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, we study the algebraic equations over the ring of $p$-complex numbers. Remainder division theorems and an analogue of Bezout’s theorem for $p$-complex polynomials are represented. For equations of the 2nd and 3rd degrees, conditions for the existence of roots are obtained, in some cases solutions are given in an explicit form. For polynomials of an arbitrary degree with an invertible leading coefficient, theorems on factorisation with a unit leading coefficient are proven in the cases where there are simple roots, multiple roots, and no roots. It is shown that in the absence of multiple roots, this decomposition will be unique, and in the case of the presence of multiple roots, the polynomial admits an infinite number of expansions.
Keywords: dual number; polynomial; ring of $p$-complex numbers; p-complex polynomial; zero divisor; Cardano’s formula; polynomial factorisation.
@article{BGUMI_2022_3_a2,
     author = {V. V. Dovgodilin},
     title = {Algebraic equations and polynomials over the ring of $p$-complex numbers},
     journal = {Journal of the Belarusian State University. Mathematics and Informatics},
     pages = {37--44},
     publisher = {mathdoc},
     volume = {3},
     year = {2022},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/BGUMI_2022_3_a2/}
}
TY  - JOUR
AU  - V. V. Dovgodilin
TI  - Algebraic equations and polynomials over the ring of $p$-complex numbers
JO  - Journal of the Belarusian State University. Mathematics and Informatics
PY  - 2022
SP  - 37
EP  - 44
VL  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/BGUMI_2022_3_a2/
LA  - ru
ID  - BGUMI_2022_3_a2
ER  - 
%0 Journal Article
%A V. V. Dovgodilin
%T Algebraic equations and polynomials over the ring of $p$-complex numbers
%J Journal of the Belarusian State University. Mathematics and Informatics
%D 2022
%P 37-44
%V 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/BGUMI_2022_3_a2/
%G ru
%F BGUMI_2022_3_a2
V. V. Dovgodilin. Algebraic equations and polynomials over the ring of $p$-complex numbers. Journal of the Belarusian State University. Mathematics and Informatics, Tome 3 (2022), pp. 37-44. http://geodesic.mathdoc.fr/item/BGUMI_2022_3_a2/

[1] V. A. Pavlovskii, “Algebraicheskie uravneniya s veschestvennymi koeffitsientami v koltse h-kompleksnykh chisel”, Vestsi BDPU. Seryya 3. Fizika. Matematyka. Іnfarmatyka. Biyalogiya. Geagrafiya, 4 (2020), 25–31

[2] V. A. Pavlovskii, I. L. Vasilev, “O svoistvakh h-differentsiruemykh funktsii”, Zhurnal Belorusskogo gosudarstvennogo universiteta. Matematika. Informatika, 2 (2021), 29–37 | DOI

[3] V. A. Pavlovskii, I. L. Vasilev, “O lokalnoi obratimosti funktsii h-kompleksnogo peremennogo”, Zhurnal Belorusskogo gosudarstvennogo universiteta. Matematika. Informatika, 1 (2022), 103–107 | DOI

[4] I. M. Yaglom, Kompleksnye chisla i ikh primenenie v geometrii, Editorial URSS, Moskva, 2004, 192 pp.

[5] V. V. Dovgodilin, “Skhodimost na mnozhestve p-kompleksnykh chisel i svoistva p-kompleksnykh stepennykh ryadov”, Vestsi BDPU. Seryya 3. Fizika. Matematyka. Іnfarmatyka. Biyalogiya. Geagrafiya, 4 (2020), 32–39

[6] F. M. Dimentberg, Vintovoe ischislenie i ego prilozheniya v mekhanike, Nauka, Moskva, 1965, 200 pp.

[7] I. L. Vasilev, V. V. Dovgodilin, “O nekotorykh svoistvakh p-golomorfnykh i p-analiticheskikh funktsii”, Vestsi Natsyyanalnai akademii navuk Belarusi. Seryya fizika-matematychnykh navuk, 57(2) (2021), 176–184 | DOI | MR

[8] F. Messelmi, “Analysis of dual functions”, Annual Review of Chaos Theory, Bifurcations and Dynamical Systems, 4 (2013), 37–54

[9] A. G. Kurosh, Kurs vysshei algebry, Nauka, Moskva, 1968, 431 pp. | MR