Hypersingular integro-differential equation with recurrent relations in coefficients
Journal of the Belarusian State University. Mathematics and Informatics, Tome 3 (2022), pp. 6-15.

Voir la notice de l'article provenant de la source Math-Net.Ru

A new hypersingular integro-differential equation is considered on a closed curve located on the complex plane. The equation refers to linear equations with variable coefficients of a special kind. A characteristic feature is the presence of constant multipliers in the coefficients, given by some recurrent relations. The equation is first reduced to solving the Riemann boundary value problem on the original curve. A class of functions is established for solving the Riemann problem, after which this problem is solved. Next, it is necessary to solve two linear differential equations of arbitrary order for analytical functions in two different regions of the complex plane. The corresponding fundamental systems of solutions are found, after which the method of variation of arbitrary constants is used for the solution. Restrictions are imposed on the obtained solutions of differential equations in order to achieve their analyticity. As a result, all the resulting solvability conditions of the original equation are written explicitly. The solution of the original equation after solving the differential equations can be written explicitly. Solved the example.
Keywords: integro-differential equation; hypersingular integral; Riemann boundary problem; linear differential equation; analytic function.
@article{BGUMI_2022_3_a0,
     author = {A. P. Shilin},
     title = {Hypersingular integro-differential equation with recurrent relations in coefficients},
     journal = {Journal of the Belarusian State University. Mathematics and Informatics},
     pages = {6--15},
     publisher = {mathdoc},
     volume = {3},
     year = {2022},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/BGUMI_2022_3_a0/}
}
TY  - JOUR
AU  - A. P. Shilin
TI  - Hypersingular integro-differential equation with recurrent relations in coefficients
JO  - Journal of the Belarusian State University. Mathematics and Informatics
PY  - 2022
SP  - 6
EP  - 15
VL  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/BGUMI_2022_3_a0/
LA  - ru
ID  - BGUMI_2022_3_a0
ER  - 
%0 Journal Article
%A A. P. Shilin
%T Hypersingular integro-differential equation with recurrent relations in coefficients
%J Journal of the Belarusian State University. Mathematics and Informatics
%D 2022
%P 6-15
%V 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/BGUMI_2022_3_a0/
%G ru
%F BGUMI_2022_3_a0
A. P. Shilin. Hypersingular integro-differential equation with recurrent relations in coefficients. Journal of the Belarusian State University. Mathematics and Informatics, Tome 3 (2022), pp. 6-15. http://geodesic.mathdoc.fr/item/BGUMI_2022_3_a0/

[1] I. V. Boikov, “Analiticheskie i chislennye metody resheniya gipersingulyarnykh integralnykh uravnenii”, Dinamicheskie sistemy, 9(3) (2019), 244–272

[2] E. I. Zverovich, “Reshenie gipersingulyarnogo integro-differentsialnogo uravneniya s postoyannymi koeffitsientami”, Doklady Natsionalnoi akademii nauk Belarusi, 54(6) (2010), 5–8

[3] E. I. Zverovich, A. P. Shilin, “Reshenie integro-differentsialnykh uravnenii s singulyarnymi i gipersingulyarnymi integralami spetsialnogo vida”, Izvestiya Natsionalnoi akademii nauk Belarusi. Seriya fiziko-matematicheskikh nauk, 54(4) (2018), 404–407 | DOI

[4] A. P. Shilin, “Gipersingulyarnoe integro-differentsialnoe uravnenie eilerova tipa”, Izvestiya Natsionalnoi akademii nauk Belarusi. Seriya fiziko-matematicheskikh nauk, 56(1) (2020), 17–29 | DOI | MR

[5] A. P. Shilin, “Reshenie gipersingulyarnogo integro-differentsialnogo uravneniya s opredelitelyami tipa vronskianov”, Izvestiya Natsionalnoi akademii nauk Belarusi. Seriya fiziko-matematicheskikh nauk, 57(3) (2021), 296–310 | DOI | MR

[6] A. P. Shilin, “Gipersingulyarnye integro-differentsialnye uravneniya so stepennymi mnozhitelyami v koeffitsientakh”, Zhurnal Belorusskogo gosudarstvennogo universiteta. Matematika. Informatika, 3 (2019), 48–56 | DOI

[7] F. D. Gakhov, Kraevye zadachi, Nauka, Moskva, 1977, 640 pp.

[8] E. Kamke, Spravochnik po obyknovennym differentsialnym uravneniyam, Lan, Sankt-Peterburg, 2003, 576 pp.