The non-axisymmetric loading of an elastoplastic three-layer plate in its plane
Journal of the Belarusian State University. Mathematics and Informatics, Tome 2 (2022), pp. 57-69.

Voir la notice de l'article provenant de la source Math-Net.Ru

The statement of the boundary value problem on the deformation of a circular three-layer plate in its plane under the action of a non-axisymmetric load is herein presented. The materials of thin carrier layers obey the hypotheses of the theory of small elastoplastic deformations. The relatively thick filler is physically non-linearly elastic. A system of non-linear differential equilibrium equations in partial derivatives is obtained. A general technique for solving the problem in displacements based on the Fourier method and Ilyushin’s method of elastic solutions is proposed. The case of an external cosine load is considered. An iterative solution of a boundary value problem for a physically non-linear plate is obtained. The corresponding solution of the elastic problem is written out in the final form. The obtained solution is numerically tested.
Keywords: circular three-layer plate; non-axisymmetric load; movement; plastic.
@article{BGUMI_2022_2_a5,
     author = {E. I. Starovoitov and A. V. Nesterovich},
     title = {The non-axisymmetric loading of an elastoplastic three-layer plate in its plane},
     journal = {Journal of the Belarusian State University. Mathematics and Informatics},
     pages = {57--69},
     publisher = {mathdoc},
     volume = {2},
     year = {2022},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/BGUMI_2022_2_a5/}
}
TY  - JOUR
AU  - E. I. Starovoitov
AU  - A. V. Nesterovich
TI  - The non-axisymmetric loading of an elastoplastic three-layer plate in its plane
JO  - Journal of the Belarusian State University. Mathematics and Informatics
PY  - 2022
SP  - 57
EP  - 69
VL  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/BGUMI_2022_2_a5/
LA  - ru
ID  - BGUMI_2022_2_a5
ER  - 
%0 Journal Article
%A E. I. Starovoitov
%A A. V. Nesterovich
%T The non-axisymmetric loading of an elastoplastic three-layer plate in its plane
%J Journal of the Belarusian State University. Mathematics and Informatics
%D 2022
%P 57-69
%V 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/BGUMI_2022_2_a5/
%G ru
%F BGUMI_2022_2_a5
E. I. Starovoitov; A. V. Nesterovich. The non-axisymmetric loading of an elastoplastic three-layer plate in its plane. Journal of the Belarusian State University. Mathematics and Informatics, Tome 2 (2022), pp. 57-69. http://geodesic.mathdoc.fr/item/BGUMI_2022_2_a5/

[1] E. I. Starovoitov, F. B. Nagiyev, Foundations of the theory of elasticity, plasticity and viscoelasticity, Apple Academic Press, Toronto, 2012, xvii+346 pp.

[2] L. Aghalovyan, Asymptotic theory of anisotropic plates and shells, World Scientific Publishing, Singapore, 2015, xv+360 pp.

[3] E. Carrera, F. A. Fazzolari, M. Cinefra, Thermal stress analysis of composite beams, plates and shells. Computational modelling and applications, Academic Press, Amsterdam, 2016

[4] A. G. Gorshkov, E. I. Starovoitov, A. V. Yarovaya, “Harmonic vibrations of a viscoelastoplastic sandwich cylindrical shell”, International Applied Mechanics, 37:9 (2001), 1196–1203 | DOI | Zbl

[5] E. I. Starovoitov, D. V. Leonenko, A. V. Yarovaya, “Vibrations of round three-layer plates under the action of various types of surface loads”, Strength of Materials, 35:4 (2003), 346–352 | DOI

[6] E. I. Starovoitov, D. V. Leonenko, A. V. Yarovaya, “Circular sandwich plates under local impulsive loads”, International Applied Mechanics, 39:8 (2003), 945–952 | DOI | Zbl

[7] E. I. Starovoitov, D. V. Leonenko, A. V. Yarovaya, “Vibrations of circular sandwich plates under resonance loads”, International Applied Mechanics, 39:12 (2003), 1458–1463 | DOI | Zbl

[8] E. I. Starovoitov, D. V. Leonenko, D. V. Tarlakovsky, “Resonance vibrations of a circular composite plates on an elastic foundation”, Mechanics of Composite Materials, 51:5 (2015), 561–570 | DOI

[9] G. I. Mikhasev, V. A. Eremeyev, K. Wilde, S. S. Maevskaya, “Assessment of dynamic characteristics of thin cylindrical sandwich panels with magnetorheological core”, Journal of Intelligent Material Systems and Structures, 30:18–19 (2019), 2748–2769 | DOI

[10] G. I. Mikhasev, H. Altenbach, “Free vibrations of elastic laminated beams, plates and cylindrical shells”, Thin-walled laminated structures, Advanced Structured Materials, 106, Springer, Cham, 2019, 157–198 | DOI | MR

[11] V. N. Bakulin, E. N. Volkov, A. I. Simonov, “Dynamic stability of a cylindrical shell under alternating axial external pressure”, Russian Aeronautics, 60:4 (2017), 508–513 | DOI

[12] V. N. Bakulin, D. A. Boitsova, AYa. Nedbai, “Parametric resonance of a three-layered cylindrical composite rib-stiffened shell”, Mechanics of Composite Materials, 57:5 (2021), 623–634 | DOI

[13] D. V. Kondratov, L. I. Mogilevich, V. S. Popov, A. A. Popova, “Hydroelastic oscillations of a circular plate, resting on Winkler foundation”, Journal of Physics. Conference Series, 944 (2018), 012057 | DOI

[14] L. I. Mogilevich, V. S. Popov, A. A. Popova, A. V. Christoforova, “Mathematical modeling of hydroelastic oscillations of the stamp and the plate, resting on Pasternak foundation”, Journal of Physics. Conference Series, 944 (2018), 012081 | DOI

[15] D. V. Tarlakovskii, G. V. Fedotenkov, “Two-dimensional nonstationary contact of elastic cylindrical or spherical shells”, Journal of Machinery Manufacture and Reliability, 43:2 (2014), 145–152 | DOI

[16] YeM. Suvorov, D. V. Tarlakovskii, G. V. Fedotenkov, “The plane problem of the impact of a rigid body on a half-space modelled by a Cosserat medium”, Journal of Applied Mathematics and Mechanics, 76:5 (2012), 511–518 | DOI | MR

[17] V. N. Paimushin, R. K. Gazizullin, “Static and monoharmonic acoustic impact on a laminated plate”, Mechanics of Composite Materials, 53:3 (2017), 283–304 | DOI

[18] V. N. Paimushin, V. A. Firsov, V. M. Shishkin, “Modeling the dynamic response of a carbon-fiber-reinforced plate at resonance vibrations considering the internal friction in the material and the external aerodynamic damping”, Mechanics of Composite Materials, 53:4 (2017), 425–440 | DOI

[19] V. N. Paimushin, “Theory of moderately large deflections of sandwich shells having a transversely soft core and reinforced along their contour”, Mechanics of Composite Materials, 53:1 (2017), 1–16 | DOI

[20] I. Ivañez, M. M. Moure, S. K. Garcia-Castillo, S. Sanchez-Saez, “The oblique impact response of composite sandwich plates”, Composite Structures, 133 (2015), 1127–1136 | DOI

[21] N. Grover, B. N. Singh, D. K. Maiti, “An inverse trigonometric shear deformation theory for supersonic flutter characteristics of multilayered composite plates”, Aerospace Science and Technology, 52 (2016), 41–51 | DOI

[22] E. I. Starovoitov, D. V. Leonenko, “Deformation of a three-layer elastoplastic beam on an elastic foundation”, Mechanics of Solids, 46:2 (2011), 291–298 | DOI

[23] E. I. Starovoitov, D. V. Leonenko, A. V. Yarovaya, “Elastoplastic bending of a sandwich bar on an elastic foundation”, International Applied Mechanics, 43:4 (2007), 451–459 | DOI | MR | Zbl

[24] Z. Xie, “An approximate solution to the plastic indentation of circular sandwich panels”, Mechanics of Composite Materials, 54:2 (2018), 243–250 | DOI

[25] A. Kudin, MAV. Al-Omari, BGM. Al-Athamneh, HKM. Al-Athamneh, “Bending and buckling of circular sandwich plates with the nonlinear elastic core material”, International Journal of Mechanical Engineering and Information Technology, 3:8 (2015), 1487–1493

[26] L. Skec, G. Jelenic, “Analysis of a geometrically exact multi-layer beam with a rigid interlayer connection”, Acta Mechanica, 225:2 (2014), 523–541 | DOI | MR | Zbl

[27] M. Pradhan, P. R. Dash, P. K. Pradhan, “Static and dynamic stability analysis of an asymmetric sandwich beam resting on a variable Pasternak foundation subjected to thermal gradient”, Meccanica, 51:3 (2016), 725–739 | DOI | MR | Zbl

[28] Wang. Zhihua, L. u. Guoxing, Zhu. Feng, Zhao. Longmao, “Load-carrying capacity of circular sandwich plates at large deflection”, Journal of Engineering Mechanics, 143:9 (2017), 04017057 | DOI

[29] H. V. Zadeh, M. Tahani, “Analytical bending analysis of a circular sandwich plate under distributed load”, International Journal of Recent Advances in Mechanical Engineering, 6:1 (2017), 1–10 | DOI

[30] L. Yang, O. Harrysson, H. West, D. Cormier, “A comparison of bending properties for cellular core sandwich panels”, Materials Sciences and Applications, 4:8 (2013), 471–477 | DOI

[31] A. V. Nesterovich, “Deformirovanie trekhsloinoi krugovoi plastiny pri kosinusoidalnom nagruzhenii v svoei ploskosti”, Problemy fiziki, matematiki i tekhniki, 1 (2020), 85–90

[32] A. V. Nesterovich, “Osesimmetrichnoe nagruzhenie krugloi fizicheski nelineinoi trekhsloinoi plastiny v svoei ploskosti”, Problemy fiziki, matematiki i tekhniki, 3 (2021), 24–29 | DOI

[33] E. I. Starovoitov, “Description of the thermomechanical properties of some structural materials”, Strength of Materials, 20:4 (1988), 426–431 | DOI