On the power of tests of multidimensional discrete uniformity used for statistical analysis of random number generators
Journal of the Belarusian State University. Mathematics and Informatics, Tome 1 (2022), pp. 26-37.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, we obtained the asymptotic power values for the statistical tests of multidimensional discrete uniformity under conditions of contiguous convergence of alternatives. Two versions of the test are considered, namely, with overlapping blocks (included in the $NIST ~SP ~800-22$ test suit) and with non-overlapping blocks. The null hypothesis $H_{0}$ is related to the so-called pure randomness of the observed sequence, i. e. independence and the same uniform distribution of its elements. An alternative $H_{1}$ is assumed to be a Markov chain of some arbitrary fixed finite order.
Keywords: power of a test; test of multidimensional discrete uniformity; contiguous alternatives; non-central chi-squared distribution; random number generator; Markov chain.
@article{BGUMI_2022_1_a3,
     author = {V. A. Valoshka and A. I. Trubey},
     title = {On the power of tests of multidimensional discrete uniformity used for statistical analysis of random number generators},
     journal = {Journal of the Belarusian State University. Mathematics and Informatics},
     pages = {26--37},
     publisher = {mathdoc},
     volume = {1},
     year = {2022},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/BGUMI_2022_1_a3/}
}
TY  - JOUR
AU  - V. A. Valoshka
AU  - A. I. Trubey
TI  - On the power of tests of multidimensional discrete uniformity used for statistical analysis of random number generators
JO  - Journal of the Belarusian State University. Mathematics and Informatics
PY  - 2022
SP  - 26
EP  - 37
VL  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/BGUMI_2022_1_a3/
LA  - ru
ID  - BGUMI_2022_1_a3
ER  - 
%0 Journal Article
%A V. A. Valoshka
%A A. I. Trubey
%T On the power of tests of multidimensional discrete uniformity used for statistical analysis of random number generators
%J Journal of the Belarusian State University. Mathematics and Informatics
%D 2022
%P 26-37
%V 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/BGUMI_2022_1_a3/
%G ru
%F BGUMI_2022_1_a3
V. A. Valoshka; A. I. Trubey. On the power of tests of multidimensional discrete uniformity used for statistical analysis of random number generators. Journal of the Belarusian State University. Mathematics and Informatics, Tome 1 (2022), pp. 26-37. http://geodesic.mathdoc.fr/item/BGUMI_2022_1_a3/

[1] A. Rukhin, J. Soto, J. Nechvatal, M. Smid, E. Barker, S. Leigh, A statistical test suite for random and pseudorandom number generators for cryptographic applications, NIST SP 800-22, National Institute of Standards and Technology, Gaithersburg, 2010, 131 pp. | DOI

[2] A. I. Trubei, V. Yu. Palukha, I. K. Pirshtuk, M. V. Maltsev, N. A. Raschenya, “Metodika testirovaniya sluchainykh posledovatelnostei na osnove statisticheskogo rasstoyaniya i zakona povtornogo logarifma”, Problemy zaschity informatsii (s grifom «Sekretno»), BGU, Minsk, 2020, 64–94

[3] S. Amari, H. Nagaoka, Methods of information geometry, Translations of Mathematical Monographs, 191, American Mathematical Society, Providence, 2000, 206 pp. | MR | Zbl

[4] P. Billingsley, “Statistical methods in Markov chains”, The Annals of Mathematical Statistics, 32:1 (1961), 12–40 | DOI | MR | Zbl

[5] M. Hayashi, S. Watanabe, “Information geometry approach to parameter estimation in Markov chains”, The Annals of Statistics, 44:4 (2016), 1495–1535 | DOI | MR | Zbl

[6] Yu. S. Kharin, A. I. Petlitskii, “Tsep Markova s-go poryadka s r chastichnymi svyazyami i statisticheskie vyvody o ee parametrakh”, Diskretnaya matematika, 19:2 (2007), 109–130 | DOI | Zbl

[7] V. A. Voloshko, E. V. Vecherko, “Novye verkhnie granitsy dlya funktsii netsentralnogo khi-kvadrat raspredeleniya”, Zhurnal Belorusskogo gosudarstvennogo universiteta. Matematika. Informatika, 1 (2020), 70–74 | DOI | MR