On the embedding of the $\Omega$-saturation of a topological space
Journal of the Belarusian State University. Mathematics and Informatics, Tome 1 (2022), pp. 21-25.

Voir la notice de l'article provenant de la source Math-Net.Ru

The countably-compactification of a topological space $X$ is such its extension $Y$, that $Y$ is a completely regular and countably-compact space, and any closed countably-compact subset of $X$ is closed in $Y$. But this extension does not always exist. Due to this, the concept of a saturation of a topological space appeared, which is a generalisation of the countably-compactification: instead of the condition of the countably-compactness of $Y$, it is necessary that any infinite subset of $X$ has a limit point in $Y$. Meanwhile, the second condition remains unchanged. Such an extension is already defined for any $T_{1}$-space. In this paper we consider a specific construction of saturation named as $\Omega$-saturation. It is proved that under some additional (necessary and sufficient) condition to the separation of the initial space $X$, its $\Omega$-saturation is canonically embedded in the Stone – Cech compactification $\beta X$. An analogous result is obtained for the countably-compactification by K. Morita.
Keywords: saturation of a topological space; countably-compactification in the sense of Morita; $\Omega$-saturation of a topological space; Wallman compactification; $\Delta$-base; Stone - Cech compactification.
@article{BGUMI_2022_1_a2,
     author = {A. S. Biadrytski and V. L. Timokhovich},
     title = {On the embedding of the $\Omega$-saturation of a topological space},
     journal = {Journal of the Belarusian State University. Mathematics and Informatics},
     pages = {21--25},
     publisher = {mathdoc},
     volume = {1},
     year = {2022},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/BGUMI_2022_1_a2/}
}
TY  - JOUR
AU  - A. S. Biadrytski
AU  - V. L. Timokhovich
TI  - On the embedding of the $\Omega$-saturation of a topological space
JO  - Journal of the Belarusian State University. Mathematics and Informatics
PY  - 2022
SP  - 21
EP  - 25
VL  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/BGUMI_2022_1_a2/
LA  - ru
ID  - BGUMI_2022_1_a2
ER  - 
%0 Journal Article
%A A. S. Biadrytski
%A V. L. Timokhovich
%T On the embedding of the $\Omega$-saturation of a topological space
%J Journal of the Belarusian State University. Mathematics and Informatics
%D 2022
%P 21-25
%V 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/BGUMI_2022_1_a2/
%G ru
%F BGUMI_2022_1_a2
A. S. Biadrytski; V. L. Timokhovich. On the embedding of the $\Omega$-saturation of a topological space. Journal of the Belarusian State University. Mathematics and Informatics, Tome 1 (2022), pp. 21-25. http://geodesic.mathdoc.fr/item/BGUMI_2022_1_a2/

[1] A. V. Arkhangelskii, “Ob odnom klasse prostranstv, soderzhaschem vse metricheskie i vse lokalno bikompaktnye prostranstva”, Matematicheskii sbornik, 67:1 (1965), 55–88

[2] J. Nagata, “A note on M-space and topologically complete space”, Proceedings of the Japan Academy, 45:7 (1969), 541–543 | DOI | MR | Zbl

[3] K. Morita, “Products of normal spaces with metric spaces”, Mathematische Annalen, 154:4 (1964), 365–382 | DOI | MR | Zbl

[4] K. Morita, “A survey of the theory of M-spaces”, General Topology and its Applications, 1:1 (1971), 49–55 | DOI | MR | Zbl

[5] K. Morita, “Countably-compactifiable spaces”, Science Reports of the Tokyo Kyoiku Daigaku, 12:313/328 (1973), 7–15 | MR | Zbl

[6] D. K. Burke, E. K. van-Douwen, “On countably compact extensions of normal locally compact M-spaces”, Set-theoretic topology, Academic Press, New York, 1977, 81–89 | DOI | MR

[7] I. Yu. Goldovt, V. L. Timokhovich, “Nasyscheniya topologicheskikh prostranstv i problema Mority”, Doklady Akademii nauk BSSR, 21:9 (1977), 777–780 | MR | Zbl

[8] G. O. Kukrak, V. L. Timokhovich, “O schetnokompaktifitsiruemosti v smysle Mority”, Zhurnal Belorusskogo gosudarstvennogo universiteta. Matematika. Informatika, 1 (2021), 46–53 | DOI | MR

[9] R. Engelking, Obschaya topologiya, Mir, Moskva, 1986, 752 pp. | MR

[10] A. V. Arkhangelskii, “Kompaktnost”, Itogi nauki i tekhniki. Seriya. Sovremennye problemy matematiki. Fundamentalnye napravleniya, 50, 1989, 5–128

[11] G. O. Kukrak, V. L. Timokhovich, “O predele obratnogo spektra eksponentsialnykh prostranstv”, Vestnik BGU. Fizika. Matematika. Informatika, 1 (2001), 51–55 | MR | Zbl

[12] D. S. Frolova, “O sekventsialno sobstvennykh topologiyakh prostranstva otobrazhenii”, Trudy Instituta matematiki, 21:1 (2013), 102–108 | Zbl