Voir la notice de l'article provenant de la source Math-Net.Ru
@article{BGUMI_2022_1_a2, author = {A. S. Biadrytski and V. L. Timokhovich}, title = {On the embedding of the $\Omega$-saturation of a topological space}, journal = {Journal of the Belarusian State University. Mathematics and Informatics}, pages = {21--25}, publisher = {mathdoc}, volume = {1}, year = {2022}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/BGUMI_2022_1_a2/} }
TY - JOUR AU - A. S. Biadrytski AU - V. L. Timokhovich TI - On the embedding of the $\Omega$-saturation of a topological space JO - Journal of the Belarusian State University. Mathematics and Informatics PY - 2022 SP - 21 EP - 25 VL - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/BGUMI_2022_1_a2/ LA - ru ID - BGUMI_2022_1_a2 ER -
%0 Journal Article %A A. S. Biadrytski %A V. L. Timokhovich %T On the embedding of the $\Omega$-saturation of a topological space %J Journal of the Belarusian State University. Mathematics and Informatics %D 2022 %P 21-25 %V 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/BGUMI_2022_1_a2/ %G ru %F BGUMI_2022_1_a2
A. S. Biadrytski; V. L. Timokhovich. On the embedding of the $\Omega$-saturation of a topological space. Journal of the Belarusian State University. Mathematics and Informatics, Tome 1 (2022), pp. 21-25. http://geodesic.mathdoc.fr/item/BGUMI_2022_1_a2/
[1] A. V. Arkhangelskii, “Ob odnom klasse prostranstv, soderzhaschem vse metricheskie i vse lokalno bikompaktnye prostranstva”, Matematicheskii sbornik, 67:1 (1965), 55–88
[2] J. Nagata, “A note on M-space and topologically complete space”, Proceedings of the Japan Academy, 45:7 (1969), 541–543 | DOI | MR | Zbl
[3] K. Morita, “Products of normal spaces with metric spaces”, Mathematische Annalen, 154:4 (1964), 365–382 | DOI | MR | Zbl
[4] K. Morita, “A survey of the theory of M-spaces”, General Topology and its Applications, 1:1 (1971), 49–55 | DOI | MR | Zbl
[5] K. Morita, “Countably-compactifiable spaces”, Science Reports of the Tokyo Kyoiku Daigaku, 12:313/328 (1973), 7–15 | MR | Zbl
[6] D. K. Burke, E. K. van-Douwen, “On countably compact extensions of normal locally compact M-spaces”, Set-theoretic topology, Academic Press, New York, 1977, 81–89 | DOI | MR
[7] I. Yu. Goldovt, V. L. Timokhovich, “Nasyscheniya topologicheskikh prostranstv i problema Mority”, Doklady Akademii nauk BSSR, 21:9 (1977), 777–780 | MR | Zbl
[8] G. O. Kukrak, V. L. Timokhovich, “O schetnokompaktifitsiruemosti v smysle Mority”, Zhurnal Belorusskogo gosudarstvennogo universiteta. Matematika. Informatika, 1 (2021), 46–53 | DOI | MR
[9] R. Engelking, Obschaya topologiya, Mir, Moskva, 1986, 752 pp. | MR
[10] A. V. Arkhangelskii, “Kompaktnost”, Itogi nauki i tekhniki. Seriya. Sovremennye problemy matematiki. Fundamentalnye napravleniya, 50, 1989, 5–128
[11] G. O. Kukrak, V. L. Timokhovich, “O predele obratnogo spektra eksponentsialnykh prostranstv”, Vestnik BGU. Fizika. Matematika. Informatika, 1 (2001), 51–55 | MR | Zbl
[12] D. S. Frolova, “O sekventsialno sobstvennykh topologiyakh prostranstva otobrazhenii”, Trudy Instituta matematiki, 21:1 (2013), 102–108 | Zbl