Voir la notice de l'article provenant de la source Math-Net.Ru
@article{BGUMI_2021_3_a3, author = {M. M. Vas'kovskii}, title = {Random walks on cayley graphs of complex reflection groups}, journal = {Journal of the Belarusian State University. Mathematics and Informatics}, pages = {51--56}, publisher = {mathdoc}, volume = {3}, year = {2021}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/BGUMI_2021_3_a3/} }
TY - JOUR AU - M. M. Vas'kovskii TI - Random walks on cayley graphs of complex reflection groups JO - Journal of the Belarusian State University. Mathematics and Informatics PY - 2021 SP - 51 EP - 56 VL - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/BGUMI_2021_3_a3/ LA - ru ID - BGUMI_2021_3_a3 ER -
M. M. Vas'kovskii. Random walks on cayley graphs of complex reflection groups. Journal of the Belarusian State University. Mathematics and Informatics, Tome 3 (2021), pp. 51-56. http://geodesic.mathdoc.fr/item/BGUMI_2021_3_a3/
[1] D. Jao, S. D. Miller, R. Venkatesan, “Expander graphs based on GRH with an application to elliptic curve cryptography”, Journal of Number Theory, 129(6) (2009), 1491–1504 | DOI | MR | Zbl
[2] D. X. Charles, K. E. Lauter, E. Z. Goren, “Cryptographic hash functions from expander graphs”, Journal of Cryptology, 22(1) (2009), 93–113 | DOI | MR | Zbl
[3] D. A. Spielman, “Linear-time encodable and decodable error-correcting codes”, IEEE Transactions on Information Theory, 42(6) (1996), 1723–1731 | DOI | MR | Zbl
[4] T. Sauerwald, “Randomized protocols for information dissemination”, University of Padeborn, Padeborn, 2008, 146
[5] G. C. Shephard, J. A. Todd, “Finite unitary reflection groups”, Canadian Journal of Mathematics, 6 (1954), 274–304 | DOI | MR | Zbl
[6] P. Boalch, “Painleve equations and complex reflections”, Annales de l’Institut Fourier, 53(4) (2003), 1009–1022 | DOI | MR | Zbl
[7] D. J. Aldous, “Random walks on finite groups and rapidly mixing Markov chains”, Lecture notes in mathematics, 17, Springer, Berlin, 1983, 243–297 | MR
[8] M. Vaskouski, A. Zadorozhnyuk, “Resistance distances in Cayley graphs on symmetric groups”, Discrete Applied Mathematics, 227 (2017), 121–135 | DOI | MR | Zbl
[9] Shi. Jian-yi, “Formula for the reflection length of elements in the group G(m, p, n)”, Journal of Algebra, 316(1) (2007), 284–296 | DOI | MR | Zbl
[10] M. Krebs, A. Shaheen, “Expander families and Cayley graphs: a beginner’s guide”, Oxford University Press, New York, 2011, 258 | MR
[11] L. Babai, “Local expansion of vertex-transitive graphs and random generation in finite groups”, Proceedings of the 23rd annual ACM symposium on theory of computing (New Orleans, Louisiana, USA), ACM Press, New York, 1991, 164–174 | DOI | MR