On rational Abel – Poisson means on a segment and approximations of Markov functions
Journal of the Belarusian State University. Mathematics and Informatics, Tome 3 (2021), pp. 6-24.

Voir la notice de l'article provenant de la source Math-Net.Ru

Approximations on the segment $[-1,1]$, of Markov functions by Abel – Poisson sums of a rational integral operator of Fourier type associated with the Chebyshev – Markov system of algebraic fractions in the case of a fixed number of geometrically different poles are investigated. An integral representation of approximations and an estimate of uniform approximations are found. Approximations of Markov functions in the case when the measure $\mu$ satisfies the conditions $supp\mu =[1,a], a>1, d\mu(t)=\phi(t)dt$ and $\phi (t)\asymp (t-1)^{\alpha}$ on $[1,a]$ are studied and estimates of pointwise and uniform approximations and the asymptotic expression of the majorant of uniform approximations are obtained. The optimal values of the parameters at which the majorant has the highest rate of decrease are found. As a corollary, asymptotic estimates of approximations on the segment $[-1,1]$, are given by the method of rational approximation of some elementary Markov functions under study.
Mots-clés : Markov functions; rational integral operators; Abel – Poisson means; Chebyshev – Markov algebraic fractions; best approximations; asymptotic estimates; exact constants.
@article{BGUMI_2021_3_a0,
     author = {P. G. Potseiko and Y. A. Rovba},
     title = {On rational {Abel} {\textendash} {Poisson} means on a segment and approximations of {Markov} functions},
     journal = {Journal of the Belarusian State University. Mathematics and Informatics},
     pages = {6--24},
     publisher = {mathdoc},
     volume = {3},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/BGUMI_2021_3_a0/}
}
TY  - JOUR
AU  - P. G. Potseiko
AU  - Y. A. Rovba
TI  - On rational Abel – Poisson means on a segment and approximations of Markov functions
JO  - Journal of the Belarusian State University. Mathematics and Informatics
PY  - 2021
SP  - 6
EP  - 24
VL  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/BGUMI_2021_3_a0/
LA  - ru
ID  - BGUMI_2021_3_a0
ER  - 
%0 Journal Article
%A P. G. Potseiko
%A Y. A. Rovba
%T On rational Abel – Poisson means on a segment and approximations of Markov functions
%J Journal of the Belarusian State University. Mathematics and Informatics
%D 2021
%P 6-24
%V 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/BGUMI_2021_3_a0/
%G ru
%F BGUMI_2021_3_a0
P. G. Potseiko; Y. A. Rovba. On rational Abel – Poisson means on a segment and approximations of Markov functions. Journal of the Belarusian State University. Mathematics and Informatics, Tome 3 (2021), pp. 6-24. http://geodesic.mathdoc.fr/item/BGUMI_2021_3_a0/

[1] I. P. Natanson, “O poryadke priblizheniya nepreryvnoi 2Pi-periodicheskoi funktsii pri pomoschi ee integrala Puassona”, Doklady Akademii nauk SSSR, 72(1) (1950), 11–14 | Zbl

[2] A. F. Timan, “Tochnaya otsenka ostatka pri priblizhenii periodicheskikh differentsiruemykh funktsii integralami Puassona”, Doklady Akademii nauk SSSR, 74(1) (1950), 17–20 | Zbl

[3] E. L. Shtark, “Polnoe asimptoticheskoe razlozhenie dlya verkhnei grani ukloneniya funktsii iz Lip1 ot singulyarnogo integrala Abelya – Puassona”, Matematicheskie zametki, 13(1) (1973), 21–28

[4] V. V. Zhuk, “O poryadke priblizheniya nepreryvnoi 2Pi-periodicheskoi funktsii pri pomoschi srednikh Feiera i Puassona ee ryada Fure”, Matematicheskie zametki, 4(1) (1968), 21–32

[5] Yu. I. Rusetskii, “O priblizhenii nepreryvnykh na otrezke funktsii summami Abelya – Puassona”, Sibirskii matematicheskii zhurnal, 9(1) (1968), 136–144 | MR

[6] T. V. Zhigallo, “Priblizhenie funktsii, udovletvoryayuschikh usloviyu Lipshitsa na konechnom otrezke veschestvennoi osi, integralami Puassona – Chebysheva”, Problemy upravleniya i informatiki, 3 (2018), 46–58 | MR

[7] M. M. Dzhrbashyan, “K teorii ryadov Fure po ratsionalnym funktsiyam”, Izvestiya Akademii nauk Armyanskoi SSR, 9(7) (1956), 3–28 | MR

[8] A. A. Kitbalyan, “Razlozheniya po obobschennym trigonometricheskim sistemam”, Izvestiya Akademii nauk Armyanskoi SSR, 16(6) (1963), 3–24 | MR | Zbl

[9] A. A. Markov, Dva dokazatelstva skhodimosti nekotorykh nepreryvnykh drobei, Gosudarstvennoe izdatelstvo tekhniko-teoreticheskoi literatury, Moskva, 1948, 106–119

[10] A. A. Gonchar, “O skorosti ratsionalnoi approksimatsii nekotorykh analiticheskikh funktsii”, Matematicheskii sbornik, 105(2) (1978), 147–163 | Zbl

[11] T. Ganelius, Ortogonal polynomials and rational approximation of holomorphic function, Birkhauser, Basel, 1978, 237–243 | MR

[12] J-E. Andersson, “Best rational approximation to Markov functions”, Journal of Approximation Theory, 76(2) (1994), 219–232 | DOI | MR | Zbl

[13] A. A. Pekarskii, “Nailuchshie ravnomernye ratsionalnye priblizheniya funktsii Markova”, Algebra i analiz, 7(2) (1995), 121–132 | Zbl

[14] N. S. Vyacheslavov, E. P. Mochalina, “Rational approximations of functions of Markov – Stieltjes type in Hardy spaces Hp, 0 p = infinity”, Moscow University Mathematics Bulletin, 63(4) (2008), 125–134 | DOI | MR | Zbl

[15] A. P. Starovoitov, Yu. A. Labych, “Ratsionalnaya approksimatsiya funktsii Markova, porozhdennykh borelevskimi merami stepennogo tipa”, Problemy fiziki, matematiki i tekhniki, 1 (2009), 69–73 | Zbl

[16] A. A. Pekarskii, E. A. Rovba, “Ravnomernye priblizheniya funktsii Stiltesa posredstvom ortoproektsii na mnozhestvo ratsionalnykh funktsii”, Matematicheskie zametki, 65(3) (1999), 362–368 | Zbl

[17] S. Takenaka, “On the orthogonal functions and a new formula of interpolations”, Japanese Journal of Mathematics: Transactions and Abstracts, 2 (1925), 129–145 | DOI

[18] F. Malmquist, “Sur la determination d’une classe functions analytiques par leurs dans un ensemble donne de points”, Comptes rendus du Sixtieme Songres des mathematiciens scandinaves, Copenhagen, 1926, 253–259

[19] M. M. Dzhrbashyan, A. A. Kitbalyan, “Ob odnom obobschenii polinomov Chebysheva”, Doklady Akademii nauk Armyanskoi SSR, 38(5) (1964), 263–270 | MR | Zbl

[20] E. A. Rovba, E. G. Mikulich, “Konstanty v ratsionalnoi approksimatsii funktsii Markova – Stiltesa s fiksirovannym chislom polyusov”, Vesnik Grodzenskaga dzyarzhaunaga universiteta imya Yanki Kupaly, 1 (2013), 12–20

[21] K. N. Lungu, “O nailuchshikh priblizheniyakh ratsionalnymi funktsiyami s fiksirovannym chislom polyusov”, Matematicheskii sbornik, 86(2) (1971), 314–324 | Zbl

[22] K. N. Lungu, “O nailuchshikh priblizheniyakh ratsionalnymi funktsiyami s fiksirovannym chislom polyusov”, Sibirskii matematicheskii zhurnal, 25(2) (1984), 151–160 | Zbl

[23] E. A. Rovba, “Ob odnom pryamom metode v ratsionalnoi approksimatsii”, Doklady Akademii nauk BSSR, 23(11) (1979), 968–971 | MR | Zbl

[24] G. M. Fikhtengolts, Kurs differentsialnogo i integralnogo ischisleniya, Fizmatlit, Moskva, 2003

[25] P. G. Potseiko, E. A. Rovba, K. A. Smotritskii, “Ob odnom ratsionalnom integralnom operatore tipa Fure – Chebysheva i approksimatsii funktsii Markova”, Zhurnal Belorusskogo gosudarstvennogo universiteta. Matematika. Informatika, 2 (2020), 6–27 | MR

[26] S. N. Bernshtein, Ekstremalnye svoistva polinomov i nailuchshee priblizhenie nepreryvnykh funktsii odnoi veschestvennoi peremennoi, Glavnaya redaktsiya obschetekhnicheskoi literatury, Moskva, 1937, 200