Statistical sequential hypotheses testing on parameters of probability distributions of random binary data
Journal of the Belarusian State University. Mathematics and Informatics, Tome 2 (2021), pp. 60-66.

Voir la notice de l'article provenant de la source Math-Net.Ru

An important mathematical problem of computer data analysis – the problem of statistical sequential testing of simple hypotheses on parameters of probability distributions of observed binary data – is considered in the paper. This problem is being solved for two models of observation: for independent observations and for homogeneous Markov chains. Explicit expressions of the sequential tests statistics are derived, transparent for interpretation and convenient for computer realisation. An approach is developed to calculate the performance characteristics – error probabilities and mathematical expectations of the random number of observations required to guarantee the requested accuracy for decision rules. Asymptotic expansions for the mentioned performance characteristics are constructed under «contamination» of the probability distributions of observed data.
Keywords: random binary data; simple hypotheses; statistical sequential test; error probability; mathematical expectation of the random number of observations; «contamination»; asymptotic expansions.
@article{BGUMI_2021_2_a5,
     author = {A. J. Kharin},
     title = {Statistical sequential hypotheses testing on parameters of probability distributions of random binary data},
     journal = {Journal of the Belarusian State University. Mathematics and Informatics},
     pages = {60--66},
     publisher = {mathdoc},
     volume = {2},
     year = {2021},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/BGUMI_2021_2_a5/}
}
TY  - JOUR
AU  - A. J. Kharin
TI  - Statistical sequential hypotheses testing on parameters of probability distributions of random binary data
JO  - Journal of the Belarusian State University. Mathematics and Informatics
PY  - 2021
SP  - 60
EP  - 66
VL  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/BGUMI_2021_2_a5/
LA  - en
ID  - BGUMI_2021_2_a5
ER  - 
%0 Journal Article
%A A. J. Kharin
%T Statistical sequential hypotheses testing on parameters of probability distributions of random binary data
%J Journal of the Belarusian State University. Mathematics and Informatics
%D 2021
%P 60-66
%V 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/BGUMI_2021_2_a5/
%G en
%F BGUMI_2021_2_a5
A. J. Kharin. Statistical sequential hypotheses testing on parameters of probability distributions of random binary data. Journal of the Belarusian State University. Mathematics and Informatics, Tome 2 (2021), pp. 60-66. http://geodesic.mathdoc.fr/item/BGUMI_2021_2_a5/

[1] N. Mukhopadhyay, B. de-Silva, “Sequential methods and their applications”, CRC Press, Boca Raton, 2009, 409 | Zbl

[2] T. L. Lai, “Sequential analysis: some classical problems and new challenges”, Statistica Sinica, 11 (2001), 303–408 | MR | Zbl

[3] A. Wald, “Sequential analysis”, John Wiley and Sons, New York, 1947, 212 | MR | Zbl

[4] S. A. Aivazyan, “Sravnenie optimalnykh svoistv kriteriev Neimana – Pirsona i Valda”, Teoriya veroyatnostei i ee primeneniya, 4(1) (1959), 86–93 | MR | Zbl

[5] P. J. Huber, E. M. Ronchetti, “Robust statistics”, Wiley, New York, 2009, 354 | MR

[6] V. V. Maevskii, YuS. Kharin, “Robust regressive forecasting under functional distortions in a model”, Automation and Remote Control, 63(11) (2002), 1803–1820 | DOI | MR | Zbl

[7] J. G. Kemeny, J. L. Snell, “Finite Markov Chains”, D.Van Nostrand Co, New York, 1960, 210 | MR | Zbl

[8] A. Yu. Kharin, “Robastnost baiesovskikh i posledovatelnykh statisticheskikh reshayuschikh pravil”, BGU, Minsk, 2013, 207

[9] A. Kharin, T. T. Tu, “Performance and robustness analysis of sequential hypotheses testing for time series with trend”, Austrian Journal of Statistics, 46(3–4) (2017), 23–36 | DOI | MR

[10] T. T. Tu, AYu. Kharin, “Sequential probability ratio test for many simple hypotheses on parameters of time series with trend”, Zhurnal Belorusskogo gosudarstvennogo universiteta. Matematika. Informatika, 1 (2019), 35–45 | DOI | MR

[11] A. Y. Kharin, “An approach to asymptotic robustness analysis of sequential tests for composite parametric hypotheses”, Journal of Mathematical Sciences, 227(2) (2017), 196–203 | DOI | MR | Zbl

[12] A. Yu. Kharin, T. T. Tu, “O vychislenii veroyatnostei oshibok usechennogo posledovatelnogo kriteriya otnosheniya veroyatnostei”, Zhurnal Belorusskogo gosudarstvennogo universiteta. Matematika. Informatika, 2018(1) (2018), 68–76 | Zbl