On properties of h-differentiable functions
Journal of the Belarusian State University. Mathematics and Informatics, Tome 2 (2021), pp. 29-37

Voir la notice de l'article provenant de la source Math-Net.Ru

Research in the theory of functions of an h-complex variable is of interest in connection with existing applications in non-Euclidean geometry, theoretical mechanics, etc. This article is devoted to the study of the properties of h-differentiable functions. Criteria for h-differentiability and h-holomorphy are found, formulated and proved a theorem on finite increments for an h-holomorphic function. Sufficient conditions for h-analyticity are given, formulated and proved a uniqueness theorem for h-analytic functions.
Keywords: ring of h-complex numbers; zero divisors; h-differentiability; h-holomorphy; h-analyticity; finite increments of a function; zeros of a function; Taylor series.
@article{BGUMI_2021_2_a2,
     author = {V. A. Pavlovsky and I. L. Vasiliev},
     title = {On properties of h-differentiable functions},
     journal = {Journal of the Belarusian State University. Mathematics and Informatics},
     pages = {29--37},
     publisher = {mathdoc},
     volume = {2},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/BGUMI_2021_2_a2/}
}
TY  - JOUR
AU  - V. A. Pavlovsky
AU  - I. L. Vasiliev
TI  - On properties of h-differentiable functions
JO  - Journal of the Belarusian State University. Mathematics and Informatics
PY  - 2021
SP  - 29
EP  - 37
VL  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/BGUMI_2021_2_a2/
LA  - ru
ID  - BGUMI_2021_2_a2
ER  - 
%0 Journal Article
%A V. A. Pavlovsky
%A I. L. Vasiliev
%T On properties of h-differentiable functions
%J Journal of the Belarusian State University. Mathematics and Informatics
%D 2021
%P 29-37
%V 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/BGUMI_2021_2_a2/
%G ru
%F BGUMI_2021_2_a2
V. A. Pavlovsky; I. L. Vasiliev. On properties of h-differentiable functions. Journal of the Belarusian State University. Mathematics and Informatics, Tome 2 (2021), pp. 29-37. http://geodesic.mathdoc.fr/item/BGUMI_2021_2_a2/