On properties of h-differentiable functions
Journal of the Belarusian State University. Mathematics and Informatics, Tome 2 (2021), pp. 29-37.

Voir la notice de l'article provenant de la source Math-Net.Ru

Research in the theory of functions of an h-complex variable is of interest in connection with existing applications in non-Euclidean geometry, theoretical mechanics, etc. This article is devoted to the study of the properties of h-differentiable functions. Criteria for h-differentiability and h-holomorphy are found, formulated and proved a theorem on finite increments for an h-holomorphic function. Sufficient conditions for h-analyticity are given, formulated and proved a uniqueness theorem for h-analytic functions.
Keywords: ring of h-complex numbers; zero divisors; h-differentiability; h-holomorphy; h-analyticity; finite increments of a function; zeros of a function; Taylor series.
@article{BGUMI_2021_2_a2,
     author = {V. A. Pavlovsky and I. L. Vasiliev},
     title = {On properties of h-differentiable functions},
     journal = {Journal of the Belarusian State University. Mathematics and Informatics},
     pages = {29--37},
     publisher = {mathdoc},
     volume = {2},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/BGUMI_2021_2_a2/}
}
TY  - JOUR
AU  - V. A. Pavlovsky
AU  - I. L. Vasiliev
TI  - On properties of h-differentiable functions
JO  - Journal of the Belarusian State University. Mathematics and Informatics
PY  - 2021
SP  - 29
EP  - 37
VL  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/BGUMI_2021_2_a2/
LA  - ru
ID  - BGUMI_2021_2_a2
ER  - 
%0 Journal Article
%A V. A. Pavlovsky
%A I. L. Vasiliev
%T On properties of h-differentiable functions
%J Journal of the Belarusian State University. Mathematics and Informatics
%D 2021
%P 29-37
%V 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/BGUMI_2021_2_a2/
%G ru
%F BGUMI_2021_2_a2
V. A. Pavlovsky; I. L. Vasiliev. On properties of h-differentiable functions. Journal of the Belarusian State University. Mathematics and Informatics, Tome 2 (2021), pp. 29-37. http://geodesic.mathdoc.fr/item/BGUMI_2021_2_a2/

[1] F. Antonuccio, Semi-complex analysis and mathematical physics [Internet], 2008, arXiv: \herf{https://arxiv.org/abs/gr-qc/9311032}

[2] B. A. Rozenfeld, “Neevklidovy geometrii”, Moskva: Gosudarstvennoe izdatelstvo tekhniko-teoreticheskoi literatury, 1955, 744 | MR

[3] D. D. Ivlev, “O dvoinykh chislakh i ikh funktsiyakh. Matematika, ee prepodavanie, prilozheniya i istoriya”, 6, Gosudarstvennoe izdatelstvo fiziko-matematicheskoi literatury, Moskva, 1961, 197-203

[4] S. Deckelman, B. Robson, “Split-complex numbers and Dirac brackets”, Communications in Information and Systems, 14(3) (2014), 135-159 | DOI | MR | Zbl

[5] A. Khrennikov, “Hyperbolic quantum mechanics”, Advances in Applied Clifford Algebras, 13(1) (2003), 1-9 | DOI | MR | Zbl

[6] E. I. Zverovich, V. A. Pavlovskii, “Nakhozhdenie oblastei skhodimosti i vychislenie summ stepennykh ryadov ot h-kompleksnogo peremennogo”, Vestsi Natsyyanalnai akademii navuk Belarusi. Seryya fizika-matematychnykh navuk, 56(2) (2020), 189–193 | DOI | MR

[7] V. A. Pavlovskii, “Algebraicheskie uravneniya s veschestvennymi koeffitsientami v koltse h-kompleksnykh chisel”, Vestsi BDPU. Fizika. Matematyka. Іnfarmatyka. Biyalogiya. Geagrafiya, 4 (2020), 25-31

[8] E. I. Zverovich, “Veschestvennyi i kompleksnyi analiz. Differentsialnoe ischislenie funktsii vektornogo argumenta”, 3, Vysheishaya shkola, Minsk, 2006, 129