Voir la notice de l'article provenant de la source Math-Net.Ru
@article{BGUMI_2021_2_a0, author = {V. I. Bakhtin and B. Sadok}, title = {Packing dimensions of basins generated by distributions on a finite alphabet}, journal = {Journal of the Belarusian State University. Mathematics and Informatics}, pages = {6--16}, publisher = {mathdoc}, volume = {2}, year = {2021}, language = {en}, url = {http://geodesic.mathdoc.fr/item/BGUMI_2021_2_a0/} }
TY - JOUR AU - V. I. Bakhtin AU - B. Sadok TI - Packing dimensions of basins generated by distributions on a finite alphabet JO - Journal of the Belarusian State University. Mathematics and Informatics PY - 2021 SP - 6 EP - 16 VL - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/BGUMI_2021_2_a0/ LA - en ID - BGUMI_2021_2_a0 ER -
%0 Journal Article %A V. I. Bakhtin %A B. Sadok %T Packing dimensions of basins generated by distributions on a finite alphabet %J Journal of the Belarusian State University. Mathematics and Informatics %D 2021 %P 6-16 %V 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/BGUMI_2021_2_a0/ %G en %F BGUMI_2021_2_a0
V. I. Bakhtin; B. Sadok. Packing dimensions of basins generated by distributions on a finite alphabet. Journal of the Belarusian State University. Mathematics and Informatics, Tome 2 (2021), pp. 6-16. http://geodesic.mathdoc.fr/item/BGUMI_2021_2_a0/
[1] P. Billingsley, “Hausdorff dimension in probability theory”, Illinois Journal of Mathematics, 4 (1960), 187–209 | DOI | MR | Zbl
[2] P. Billingsley, “Hausdorff dimension in probability theory II”, Illinois Journal of Mathematics, 5 (1961), 291–298 | DOI | MR
[3] V. I. Bakhtin, B. M. Sadok, “Khausdorfovy razmernosti uzkikh basseinov v prostranstve posledovatelnostei”, Trudy Instituta matematiki, 27(1–2) (2019), 3–12
[4] V. I. Bakhtin, B. Sadok, “Upakovochnye razmernosti basseinov v prostranstve posledovatelnostei”, Doklady Natsionalnoi akademii nauk Belarusi, 64(3) (2020), 263–267 | DOI | MR
[5] V. Bakhtin, “The McMillan theorem for colored branching processes and dimensions of random fractals”, Entropy, 16(12) (2014), 6624–6653 | DOI | MR | Zbl
[6] F. Falconer, Techniques in fractal geometry, John Wiley and Sons, Chichester, 1997, 260 pp. | MR | Zbl
[7] A. N. Shiryaev, Probability-1, 3, Springer, 2016, 503 pp. | MR