Packing dimensions of basins generated by distributions on a finite alphabet
Journal of the Belarusian State University. Mathematics and Informatics, Tome 2 (2021), pp. 6-16.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider a space of infinite signals composed of letters from a finite alphabet. Each signal generates a sequence of empirical measures on the alphabet and the limit set corresponding to this sequence. The space of signals is partitioned into narrow basins consisting of signals with identical limit sets for the sequence of empirical measures and for each narrow basin its packing dimension is computed. Furthermore, we compute packing dimensions for two other types of basins defined in terms of limit behaviour of the empirical measures.
Keywords: packing dimension; empirical measure; basin of a probability measure.
@article{BGUMI_2021_2_a0,
     author = {V. I. Bakhtin and B. Sadok},
     title = {Packing dimensions of basins generated by distributions on a finite alphabet},
     journal = {Journal of the Belarusian State University. Mathematics and Informatics},
     pages = {6--16},
     publisher = {mathdoc},
     volume = {2},
     year = {2021},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/BGUMI_2021_2_a0/}
}
TY  - JOUR
AU  - V. I. Bakhtin
AU  - B. Sadok
TI  - Packing dimensions of basins generated by distributions on a finite alphabet
JO  - Journal of the Belarusian State University. Mathematics and Informatics
PY  - 2021
SP  - 6
EP  - 16
VL  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/BGUMI_2021_2_a0/
LA  - en
ID  - BGUMI_2021_2_a0
ER  - 
%0 Journal Article
%A V. I. Bakhtin
%A B. Sadok
%T Packing dimensions of basins generated by distributions on a finite alphabet
%J Journal of the Belarusian State University. Mathematics and Informatics
%D 2021
%P 6-16
%V 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/BGUMI_2021_2_a0/
%G en
%F BGUMI_2021_2_a0
V. I. Bakhtin; B. Sadok. Packing dimensions of basins generated by distributions on a finite alphabet. Journal of the Belarusian State University. Mathematics and Informatics, Tome 2 (2021), pp. 6-16. http://geodesic.mathdoc.fr/item/BGUMI_2021_2_a0/

[1] P. Billingsley, “Hausdorff dimension in probability theory”, Illinois Journal of Mathematics, 4 (1960), 187–209 | DOI | MR | Zbl

[2] P. Billingsley, “Hausdorff dimension in probability theory II”, Illinois Journal of Mathematics, 5 (1961), 291–298 | DOI | MR

[3] V. I. Bakhtin, B. M. Sadok, “Khausdorfovy razmernosti uzkikh basseinov v prostranstve posledovatelnostei”, Trudy Instituta matematiki, 27(1–2) (2019), 3–12

[4] V. I. Bakhtin, B. Sadok, “Upakovochnye razmernosti basseinov v prostranstve posledovatelnostei”, Doklady Natsionalnoi akademii nauk Belarusi, 64(3) (2020), 263–267 | DOI | MR

[5] V. Bakhtin, “The McMillan theorem for colored branching processes and dimensions of random fractals”, Entropy, 16(12) (2014), 6624–6653 | DOI | MR | Zbl

[6] F. Falconer, Techniques in fractal geometry, John Wiley and Sons, Chichester, 1997, 260 pp. | MR | Zbl

[7] A. N. Shiryaev, Probability-1, 3, Springer, 2016, 503 pp. | MR