Deformable voronoi model for the research of the plane stress-strain state
Journal of the Belarusian State University. Mathematics and Informatics, Tome 1 (2021), pp. 102-112.

Voir la notice de l'article provenant de la source Math-Net.Ru

The paper considers an approach to modelling geomechanical processes based on the internal forces method. In particular, the problem of non-invariance of the method to rotations is investigated. An original modification of the method based on additional central forces determined by deformations of adjacent Voronoi cells is proposed. An analytical relationship between the parameters of the microstructural model and the elastic properties of the simulated material is obtained. The results of numerical experiments to verify this relationship and the accuracy of modelling the stress-strain state are presented.
Keywords: numerical experiment; discrete element modelling; microstructural parameters; stress-strain state; deformable Voronoi.
@article{BGUMI_2021_1_a8,
     author = {V. V. Chaiko and O. L. Konovalov},
     title = {Deformable voronoi model for the research of the plane stress-strain state},
     journal = {Journal of the Belarusian State University. Mathematics and Informatics},
     pages = {102--112},
     publisher = {mathdoc},
     volume = {1},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/BGUMI_2021_1_a8/}
}
TY  - JOUR
AU  - V. V. Chaiko
AU  - O. L. Konovalov
TI  - Deformable voronoi model for the research of the plane stress-strain state
JO  - Journal of the Belarusian State University. Mathematics and Informatics
PY  - 2021
SP  - 102
EP  - 112
VL  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/BGUMI_2021_1_a8/
LA  - ru
ID  - BGUMI_2021_1_a8
ER  - 
%0 Journal Article
%A V. V. Chaiko
%A O. L. Konovalov
%T Deformable voronoi model for the research of the plane stress-strain state
%J Journal of the Belarusian State University. Mathematics and Informatics
%D 2021
%P 102-112
%V 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/BGUMI_2021_1_a8/
%G ru
%F BGUMI_2021_1_a8
V. V. Chaiko; O. L. Konovalov. Deformable voronoi model for the research of the plane stress-strain state. Journal of the Belarusian State University. Mathematics and Informatics, Tome 1 (2021), pp. 102-112. http://geodesic.mathdoc.fr/item/BGUMI_2021_1_a8/

[1] V. V. Krasnoproshin, O. L. Konovalov, V. V. Chaiko, “Algoritm rascheta geometricheskikh parametrov ploskikh gidravlicheskikh treschin”, Vestnik Brestskogo gosudarstvennogo tekhnicheskogo universiteta. Fizika, matematika, informatika, 5 (2017), 23–26

[2] V. V. Chaiko, O. L. Konovalov, M. A. Zhuravkov, “DEM-FVM conjugated parallel solver for hydraulic fracturing” (Seattle, Washington, USA), 2nd International discrete fracture network engineering conference, 2018, 1429, American Rock Mechanics Association, Alexandria

[3] H. Gao, P. Klein, “Numerical simulation of crack growth in an isotropic solid with randomized internal cohesive bonds”, Journal of the Mechanics and Physics of Solids, 46(2) (1998), 187–218 | DOI | Zbl

[4] Z. Zhang, X. Ge, “A new quasi-continuum constitutive model for crack growth in an isotropic solid”, European Journal of Mechanics – A/Solids, 24(2) (2005), 243–252 | DOI | Zbl

[5] G. Zhao, Development of micro-macro continuum-discontinuum coupled numerical method, dissertation, Ecole Polytechnique Federale de Lausanne, Lausanne, 2010

[6] O. Konovalov, S. Ji, M. Zhuravkov, “Modified virtual internal bond model based on deformable Voronoi particles”, Theoretical and Applied Mechanics Letters, 10(2) (2020), 87–91 | DOI