On some problems of instability in semi-dynamical systems
Journal of the Belarusian State University. Mathematics and Informatics, Tome 1 (2021), pp. 39-45.

Voir la notice de l'article provenant de la source Math-Net.Ru

The problem of instability of a closed positively invariant set $M$ of a semi-dynamical system on an arbitrary metric space $X$ is considered. The Lyapunov’s direct method for such problems has been developed quite completely in the case when $M$ is compact and $X$ is locally compact. In this article, we obtain sufficient conditions for instability in terms of Lyapunov functions in two situations: $M$ has a neighbourhood of positive Lagrange stable semi-trajectories; the space $X$ is asymptotically compact in some neighbourhood of $M$.
Keywords: semi-dynamical system; closed set; instability; Lyapunov function.
@article{BGUMI_2021_1_a2,
     author = {B. S. Kalitin},
     title = {On some problems of instability in semi-dynamical systems},
     journal = {Journal of the Belarusian State University. Mathematics and Informatics},
     pages = {39--45},
     publisher = {mathdoc},
     volume = {1},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/BGUMI_2021_1_a2/}
}
TY  - JOUR
AU  - B. S. Kalitin
TI  - On some problems of instability in semi-dynamical systems
JO  - Journal of the Belarusian State University. Mathematics and Informatics
PY  - 2021
SP  - 39
EP  - 45
VL  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/BGUMI_2021_1_a2/
LA  - ru
ID  - BGUMI_2021_1_a2
ER  - 
%0 Journal Article
%A B. S. Kalitin
%T On some problems of instability in semi-dynamical systems
%J Journal of the Belarusian State University. Mathematics and Informatics
%D 2021
%P 39-45
%V 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/BGUMI_2021_1_a2/
%G ru
%F BGUMI_2021_1_a2
B. S. Kalitin. On some problems of instability in semi-dynamical systems. Journal of the Belarusian State University. Mathematics and Informatics, Tome 1 (2021), pp. 39-45. http://geodesic.mathdoc.fr/item/BGUMI_2021_1_a2/

[1] A. M. Lyapunov, “Obschaya zadacha ob ustoichivosti dvizheniya”, Moskva: Gosudarstvennoe izdatelstvo tekhniko-teoreticheskoi literatury, 1950, 472 | MR

[2] N. G. Chetaev, “Ustoichivost dvizheniya”, 2, Gostekhizdat, Moskva, 1955, 207 | MR

[3] N. N. Krasovskii, “Nekotorye zadachi teorii ustoichivosti dvizheniya”, Gosudarstvennoe izdatelstvo fizikomatematicheskoi literatury, Moskva, 1959, 211 | Zbl

[4] B. S. Kalitine, P. B. Kalitine, “On the stability of almost periodic systems”, Vestnik BGU. Fizika. Matematika. Informatika, 1 (2014), 78–82 | Zbl

[5] A. S. Andreev, “Ob asimptoticheskoi ustoichivosti i neustoichivosti neavtonomnykh sistem”, Prikladnaya matematika i mekhanika, 43(5) (1979), 796–805 | Zbl

[6] B. S. Kalitin, “Ustoichivost neavtonomnykh dinamicheskikh sistem. Aktualnye zadachi teorii dinamicheskikh sistem upravleniya”, Nauka i tekhnika, Minsk, 1989, 37–46 | MR | Zbl

[7] B. S. Kalitin, “O reshenii zadach ustoichivosti pryamym metodom Lyapunova”, Izvestiya vysshikh uchebnykh zavedenii. Matematika, 6 (2017), 33–43 | MR | Zbl

[8] V. I. Zubov, “Ustoichivost dvizheniya (metody Lyapunova i ikh primenenie)”, Vysshaya shkola, Moskva, 1984, 232 | MR

[9] N. P. Bhatia, G. P. Szego, “Stability theory of dynamical systems”, 12, Springer-Verlag, Berlin, 1970, 225 | MR

[10] C. M. Kellett, “Classical converse theorems in Lyapunov’s second method”, Discrete and Continuous Dynamical Systems – B, 20(8) (2015), 2333–2360 | DOI | MR | Zbl

[11] B. S. Kalitin, “V-ustoichivost i problema Florio – Seiberta”, Differentsialnye uravneniya, 35(4) (1999), 453–463 | Zbl

[12] B. S. Kalitin, “Neustoichivost zamknutykh invariantnykh mnozhestv poludinamicheskikh sistem. Metod znakopostoyannykh funktsii Lyapunova”, Matematicheskie zametki, 85(3) (2009), 382–394 | DOI | Zbl

[13] B. S. Kalitin, “Ustoichivost dinamicheskikh sistem (Kachestvennaya teoriya)”, LAP LAMBERT Academic Publishing, Saarbrucken, 2012, 258

[14] B. S. Kalitin, “Ustoichivost dinamicheskikh sistem (Metod znakopostoyannykh funktsii Lyapunova)”, LAP LAMBERT Academic Publishing, Saarbrucken, 2013, 259

[15] S. H. Saperstone, “Semidynamical systems in infinite dimensional spaces”, 37, New York: Springer-Verlag, 1981, 474 | DOI | MR | Zbl

[16] K. S. Sibirskii, A. S. Shube, “Poludinamicheskie sistemy (Topologicheskaya teoriya)”, Shtiintsa, Kishinev, 1987, 272 | MR | Zbl

[17] K. S. Sibirskii, “Vvedenie v topologicheskuyu dinamiku”, Kishinev: Redaktsionno-izdatelskii otdel Akademii nauk Moldavskoi SSR, 1970, 144 | MR | Zbl

[18] J. H. Arredondo, P. Seibert, “On a characterization of asymptotic stability”, Aportaciones Matematicas. Serie: Comunicaciones, 29 (2001), 11–16 | MR | Zbl

[19] O. Ladyzhenskaya, “Attractors for semigroups and evolution equations”, Cambridge University Press, Cambridge, 1991, 73 | MR | Zbl