$D$-optimal designs of experiments for trigonometric regression on interval with heteroscedastic observations
Journal of the Belarusian State University. Mathematics and Informatics, Tome 3 (2020), pp. 80-85
Cet article a éte moissonné depuis la source Math-Net.Ru
In article the problem of construction continuous (number of observations is not fixed) $D$-optimal designs of experiments for trigonometric regression in a case when variance of errors of observations depend on a point in which is made is investigated. Class of functions which describe change variance of heteroscedastic observations is defined for which it is possible construct continuous $D$-optimal designs of experiments. For trigonometric regression with three factors it is constructed continuous $D$-optimal designs of experiments with different types heteroscedastic observations. For each of these types the own class of functions describing change variance of observations is defined.
Keywords:
continuous $D$-optimal designs of experiments; trigonometric regression; homoscedastic observations; heteroscedastic observations.
@article{BGUMI_2020_3_a7,
author = {V. P. Kirlitsa},
title = {$D$-optimal designs of experiments for trigonometric regression on interval with heteroscedastic observations},
journal = {Journal of the Belarusian State University. Mathematics and Informatics},
pages = {80--85},
year = {2020},
volume = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/BGUMI_2020_3_a7/}
}
TY - JOUR AU - V. P. Kirlitsa TI - $D$-optimal designs of experiments for trigonometric regression on interval with heteroscedastic observations JO - Journal of the Belarusian State University. Mathematics and Informatics PY - 2020 SP - 80 EP - 85 VL - 3 UR - http://geodesic.mathdoc.fr/item/BGUMI_2020_3_a7/ LA - ru ID - BGUMI_2020_3_a7 ER -
%0 Journal Article %A V. P. Kirlitsa %T $D$-optimal designs of experiments for trigonometric regression on interval with heteroscedastic observations %J Journal of the Belarusian State University. Mathematics and Informatics %D 2020 %P 80-85 %V 3 %U http://geodesic.mathdoc.fr/item/BGUMI_2020_3_a7/ %G ru %F BGUMI_2020_3_a7
V. P. Kirlitsa. $D$-optimal designs of experiments for trigonometric regression on interval with heteroscedastic observations. Journal of the Belarusian State University. Mathematics and Informatics, Tome 3 (2020), pp. 80-85. http://geodesic.mathdoc.fr/item/BGUMI_2020_3_a7/
[1] S. M. Ermakov, A. A. Zhiglyavskii, “Matematicheskaya teoriya optimalnogo eksperimenta”, Moskva: Nauka, 1987, 320
[2] V. V. Fedorov, “Teoriya optimalnogo eksperimenta”, Moskva: Nauka, 1971, 312 | Zbl
[3] P. G. Hoel, “Minimax designs in two dimensional regression”, Annals of Mathematical Statistics, 36(4) (1965), 1097–1106 | DOI | MR | Zbl
[4] H. Dette, V. B. Melas, “Optimal designs for estimating individual coefficients in Fourier regression models”, Annals of Statistics, 31(5) (2003), 1669–1692 | DOI | MR | Zbl