$D$-optimal designs of experiments for trigonometric regression on interval with heteroscedastic observations
Journal of the Belarusian State University. Mathematics and Informatics, Tome 3 (2020), pp. 80-85.

Voir la notice de l'article provenant de la source Math-Net.Ru

In article the problem of construction continuous (number of observations is not fixed) $D$-optimal designs of experiments for trigonometric regression in a case when variance of errors of observations depend on a point in which is made is investigated. Class of functions which describe change variance of heteroscedastic observations is defined for which it is possible construct continuous $D$-optimal designs of experiments. For trigonometric regression with three factors it is constructed continuous $D$-optimal designs of experiments with different types heteroscedastic observations. For each of these types the own class of functions describing change variance of observations is defined.
Keywords: continuous $D$-optimal designs of experiments; trigonometric regression; homoscedastic observations; heteroscedastic observations.
@article{BGUMI_2020_3_a7,
     author = {V. P. Kirlitsa},
     title = {$D$-optimal designs of experiments for trigonometric regression on interval with heteroscedastic observations},
     journal = {Journal of the Belarusian State University. Mathematics and Informatics},
     pages = {80--85},
     publisher = {mathdoc},
     volume = {3},
     year = {2020},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/BGUMI_2020_3_a7/}
}
TY  - JOUR
AU  - V. P. Kirlitsa
TI  - $D$-optimal designs of experiments for trigonometric regression on interval with heteroscedastic observations
JO  - Journal of the Belarusian State University. Mathematics and Informatics
PY  - 2020
SP  - 80
EP  - 85
VL  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/BGUMI_2020_3_a7/
LA  - ru
ID  - BGUMI_2020_3_a7
ER  - 
%0 Journal Article
%A V. P. Kirlitsa
%T $D$-optimal designs of experiments for trigonometric regression on interval with heteroscedastic observations
%J Journal of the Belarusian State University. Mathematics and Informatics
%D 2020
%P 80-85
%V 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/BGUMI_2020_3_a7/
%G ru
%F BGUMI_2020_3_a7
V. P. Kirlitsa. $D$-optimal designs of experiments for trigonometric regression on interval with heteroscedastic observations. Journal of the Belarusian State University. Mathematics and Informatics, Tome 3 (2020), pp. 80-85. http://geodesic.mathdoc.fr/item/BGUMI_2020_3_a7/

[1] S. M. Ermakov, A. A. Zhiglyavskii, “Matematicheskaya teoriya optimalnogo eksperimenta”, Moskva: Nauka, 1987, 320

[2] V. V. Fedorov, “Teoriya optimalnogo eksperimenta”, Moskva: Nauka, 1971, 312 | Zbl

[3] P. G. Hoel, “Minimax designs in two dimensional regression”, Annals of Mathematical Statistics, 36(4) (1965), 1097–1106 | DOI | MR | Zbl

[4] H. Dette, V. B. Melas, “Optimal designs for estimating individual coefficients in Fourier regression models”, Annals of Statistics, 31(5) (2003), 1669–1692 | DOI | MR | Zbl