Stability of solutions and the problem of Aizerman for sixth-order differential equations
Journal of the Belarusian State University. Mathematics and Informatics, Tome 2 (2020), pp. 49-58.

Voir la notice de l'article provenant de la source Math-Net.Ru

This article is devoted to the investigation of stability of equilibrium of ordinary differential equations using the method of semi-definite Lyapunov’s functions. Types of scalar nonlinear sixth-order differential equations for which regular constant auxiliary functions are used are emphasized. Sufficient conditions of global asymptotic stability and instability of the zero solution have been obtained and it has been established that the Aizerman problem has a positive solution concerning the roots of the corresponding linear differential equation. Studies highlight the advantages of using semi-definite functions compared to definitely positive Lyapunov's functions.
Keywords: scalar differential equation; equilibrium; stability; semi-definite Lyapunov's function.
@article{BGUMI_2020_2_a3,
     author = {B. S. Kalitin},
     title = {Stability of solutions and the problem of {Aizerman} for sixth-order differential equations},
     journal = {Journal of the Belarusian State University. Mathematics and Informatics},
     pages = {49--58},
     publisher = {mathdoc},
     volume = {2},
     year = {2020},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/BGUMI_2020_2_a3/}
}
TY  - JOUR
AU  - B. S. Kalitin
TI  - Stability of solutions and the problem of Aizerman for sixth-order differential equations
JO  - Journal of the Belarusian State University. Mathematics and Informatics
PY  - 2020
SP  - 49
EP  - 58
VL  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/BGUMI_2020_2_a3/
LA  - ru
ID  - BGUMI_2020_2_a3
ER  - 
%0 Journal Article
%A B. S. Kalitin
%T Stability of solutions and the problem of Aizerman for sixth-order differential equations
%J Journal of the Belarusian State University. Mathematics and Informatics
%D 2020
%P 49-58
%V 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/BGUMI_2020_2_a3/
%G ru
%F BGUMI_2020_2_a3
B. S. Kalitin. Stability of solutions and the problem of Aizerman for sixth-order differential equations. Journal of the Belarusian State University. Mathematics and Informatics, Tome 2 (2020), pp. 49-58. http://geodesic.mathdoc.fr/item/BGUMI_2020_2_a3/

[1] A. I. Ogurtsov, “Ob ustoichivosti v tselom reshenii nelineinykh differentsialnykh uravnenii tretego i chetvertogo poryadkov”, Izvestiya vysshikh uchebnykh zavedenii. Matematika, 1 (1958), 124–129 | MR | Zbl

[2] A. I. Ogurtsov, “Ob ustoichivosti reshenii dvukh nelineinykh differentsialnykh uravnenii tretego i chetvertogo poryadkov”, Prikladnaya matematika i mekhanika, 23(1) (1959), 179–181 | MR | Zbl

[3] A. I. Ogurtsov, “Ob ustoichivosti reshenii nekotorykh nelineinykh differentsialnykh uravnenii tretego i chetvertogo poryadkov”, Izvestiya vysshikh uchebnykh zavedenii. Matematika, 3 (1959), 200–209 | MR

[4] A. I. Ogurtsov, “Ob ustoichivosti reshenii nekotorykh nelineinykh differentsialnykh uravnenii pyatogo i shestogo poryadkov”, Matematicheskie zapiski, 3(2) (1962), 78–93

[5] E. A. Barbashin, “Funktsii Lyapunova”, Moskva: Nauka, 1970, 240 | MR | Zbl

[6] A. M. Lyapunov, “Obschaya zadacha ob ustoichivosti dvizheniya”, Moskva: Gostekhizdat, 1950, 472 | MR

[7] B. S. Kalitin, “Ustoichivost differentsialnykh uravnenii (Metod znakopostoyannykh funktsii Lyapunova)”, Saarbryukken: LAP LAMBERT Academic Publishing, 2012, 223

[8] B. S. Kalitin, “Ob ustoichivosti uravneniya Lenara”, Izvestiya vysshikh uchebnykh zavedenii. Matematika, 10 (2018), 17–28 | Zbl

[9] B. S. Kalitin, “Ob ustoichivosti differentsialnykh uravnenii tretego poryadka”, Zhurnal Belorusskogo gosudarstvennogo universiteta. Matematika. Informatika, 2 (2018), 25?33 | Zbl

[10] B. S. Kalitin, “Ustoichivost nekotorykh differentsialnykh uravnenii chetvertogo i pyatogo poryadkov”, Zhurnal Belorusskogo gosudarstvennogo universiteta. Matematika. Informatika, 1 (2019), 18?27 | Zbl

[11] B. S. Kalitin, “O probleme Aizermana dlya sistem dvukh differentsialnykh uravnenii”, Matematicheskie zametki, 105(2) (2019), 240–250 | Zbl

[12] B. S. Kalitin, “Ustoichivost dinamicheskikh sistem vtorogo poryadka”, Saarbryukken: LAP LAMBERT Academic Publishing, 2019, 138

[13] B. S. Kalitin, “Ustoichivost dinamicheskikh sistem (Metod znakopostoyannykh funktsii Lyapunova)”, Saarbryukken: LAP LAMBERT Academic Publishing, 2013, 259

[14] M. A. Aizerman, “Ob odnoi probleme, kasayuscheisya ustoichivosti «v bolshom» dinamicheskikh sistem”, Uspekhi matematicheskikh nauk, 4(4) (1949), 187–188 | MR | Zbl