Hausdorff operators on homogeneous spaces of locally compact groups
Journal of the Belarusian State University. Mathematics and Informatics, Tome 2 (2020), pp. 28-35.

Voir la notice de l'article provenant de la source Math-Net.Ru

Hausdorff operators on the real line and multidimensional Euclidean spaces originated from some classical summation methods. Now it is an active research area. Hausdorff operators on general groups were defined and studied by the author since 2019. The purpose of this paper is to define and study Hausdorff operators on Lebesgue and real Hardy spaces over homogeneous spaces of locally compact groups. We introduce in particular an atomic Hardy space over homogeneous spaces of locally compact groups and obtain conditions for boundedness of Hausdorff operators on such spaces. Several corollaries are considered and unsolved problems are formulated.
Keywords: Hausdorff operator; locally compact group; homogeneous space; atomic Hardy space; Lebesgue space;bounded operator.
@article{BGUMI_2020_2_a1,
     author = {A. R. Mirotin},
     title = {Hausdorff operators on homogeneous spaces of locally compact groups},
     journal = {Journal of the Belarusian State University. Mathematics and Informatics},
     pages = {28--35},
     publisher = {mathdoc},
     volume = {2},
     year = {2020},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/BGUMI_2020_2_a1/}
}
TY  - JOUR
AU  - A. R. Mirotin
TI  - Hausdorff operators on homogeneous spaces of locally compact groups
JO  - Journal of the Belarusian State University. Mathematics and Informatics
PY  - 2020
SP  - 28
EP  - 35
VL  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/BGUMI_2020_2_a1/
LA  - en
ID  - BGUMI_2020_2_a1
ER  - 
%0 Journal Article
%A A. R. Mirotin
%T Hausdorff operators on homogeneous spaces of locally compact groups
%J Journal of the Belarusian State University. Mathematics and Informatics
%D 2020
%P 28-35
%V 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/BGUMI_2020_2_a1/
%G en
%F BGUMI_2020_2_a1
A. R. Mirotin. Hausdorff operators on homogeneous spaces of locally compact groups. Journal of the Belarusian State University. Mathematics and Informatics, Tome 2 (2020), pp. 28-35. http://geodesic.mathdoc.fr/item/BGUMI_2020_2_a1/

[1] G. H. Hardy, “Divergent Series”, Oxford: Clarendon Press, 1949, 396 | MR | Zbl

[2] C. Georgakis, “The Hausdorff mean of a Fourier – Stieltjes transform”, Proceedings of the American Mathematical Society, 116 (1992), 465–471 | DOI | MR | Zbl

[3] E. Liflyand, F. Moricz, “The Hausdorff operator is bounded on the real Hardy space H (in exp. 1)(R)”, Proceedings of the American Mathematical Society, 128 (2000), 1391–1396 | DOI | MR | Zbl

[4] G. Brown, F. Moricz, “Multivariate Hausdorff operators on the spaces L (in exp. p)(R (in exp. H))”, Journal of Mathematical Analysis and Applications, 271(2) (2002), 443–454 | DOI | MR | Zbl

[5] A. Lerner, E. Liflyand, “Multidimensional Hausdorff operators on the real Hardy space”, Journal of the Australian Mathematical Society, 83(1) (2007), 79–86 | DOI | MR | Zbl

[6] E. Liflyand, “Hausdorff operators on Hardy spaces”, Eurasian Mathematical Journal, 4(4) (2013), 101–141 | MR | Zbl

[7] J. Chen, D. Fan, S. Wang, “Hausdorff operators on Euclidean space. Applied Mathematics”, A Journal of Chinese Universities, 28(4) (2013), 548–564 | DOI | MR | Zbl

[8] A. R. Mirotin, “Boundedness of Hausdorff operators on Hardy spaces H (in exp. 1) over locally compact groups”, Journal of Mathematical Analysis and Applications, 473(1) (2019), 519–533 | DOI | MR | Zbl

[9] A. R. Mirotin, “Addendum to «Boundedness of Hausdorff operators on real Hardy spaces H (in exp. 1) over locally compact groups»”, Journal of Mathematical Analysis and Applications, 479(1) (2019), 872–874 | DOI | MR

[10] E. Hewitt, K. Ross, “Abstract Harminic Analysis”, 115, Berlin: Springer Verlag, 1963, 519 | DOI | Zbl

[11] N. Bourbaki, “Elements de mathematique. Integration”, Paris: Hermann, 1963, 222 | MR | Zbl

[12] A. R. Mirotin, “The structure of normal Hausdorff operators on Lebesgue spaces”, Forum Mathematicum, 32(1) (2020), 111–119 | DOI | MR | Zbl

[13] A. R. Mirotin, “On the structure of normal Hausdorff operators on Lebesgue spaces”, Functional Analysis and Its Applications, 53(4) (2019), 261–269 | DOI | MR | Zbl

[14] R. R. Coifman, G. Weiss, “Extensions of Hardy spaces and their use in analysis”, Bulletin of the American Mathematical Society, 83(4) (1977), 569–645 | DOI | MR | Zbl

[15] J. Heinonen, P. Koskela, N. Shanmugalingam, J. T. Tyson, “Sobolev Spaces on Metric Measure Spaces. An Approach Based on Upper Gradients”, Cambridge: Cambridge University Press, 2015, 434 | DOI | MR | Zbl

[16] A. R. Mirotin, “On the general form of linear functionals on the Hardy spaces H (in exp. 1) over compact Abelian groups and some of its applications”, Indagationes Mathematicae, 28(2) (2017), 451–462 | DOI | MR | Zbl

[17] T. Kawazoe, “Atomic Hardy spaces on semisimple Lie groups”, Japanese Journal of Mathematics, 11(2) (1985), 293–343 | DOI | MR | Zbl

[18] S. Helgason, “Topics in harmonic analysis on homogeneous spaces”, 13, Boston: Birkhauser, 1981, 142 | DOI | MR | Zbl