Voir la notice de l'article provenant de la source Math-Net.Ru
@article{BGUMI_2020_1_a7, author = {V. A. Voloshko and E. V. Vecherko}, title = {New upper bounds for noncentral chi-square cdf}, journal = {Journal of the Belarusian State University. Mathematics and Informatics}, pages = {70--74}, publisher = {mathdoc}, volume = {1}, year = {2020}, language = {en}, url = {http://geodesic.mathdoc.fr/item/BGUMI_2020_1_a7/} }
TY - JOUR AU - V. A. Voloshko AU - E. V. Vecherko TI - New upper bounds for noncentral chi-square cdf JO - Journal of the Belarusian State University. Mathematics and Informatics PY - 2020 SP - 70 EP - 74 VL - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/BGUMI_2020_1_a7/ LA - en ID - BGUMI_2020_1_a7 ER -
V. A. Voloshko; E. V. Vecherko. New upper bounds for noncentral chi-square cdf. Journal of the Belarusian State University. Mathematics and Informatics, Tome 1 (2020), pp. 70-74. http://geodesic.mathdoc.fr/item/BGUMI_2020_1_a7/
[1] J. Segura, “Monotonicity properties and bounds for the chi-square and gamma distributions”, Applied Mathematics and Computation, 246 (2014), 399–415 | DOI | MR | Zbl
[2] S. Andras, A. Baricz, Y. Sun, “The generalized marcum Q-function: an orthogonal polynomial approach”, Acta Universitatis Sapientiae. Mathematica, 3(1) (2011), 60–76 | MR | Zbl
[3] H. Bateman, A. Erdelyi, “Higher transcendental functions”, New York: McGraw-Hill, 1953, 396 | Zbl
[4] J. D. Cook, “Upper bounds on non-central chi-squared tails and truncated normal moments”, UT MD Anderson Cancer Center Department of Biostatistics Working Paper Series, 2010, 62 | DOI | Zbl