New upper bounds for noncentral chi-square cdf
Journal of the Belarusian State University. Mathematics and Informatics, Tome 1 (2020), pp. 70-74.

Voir la notice de l'article provenant de la source Math-Net.Ru

Some new upper bounds for noncentral chi-square cumulative density function are derived from the basic symmetries of the multidimensional standard Gaussian distribution: unitary invariance, components independence in both polar and Cartesian coordinate systems. The proposed new bounds have analytically simple form compared to analogues available in the literature: they are based on combination of exponents, direct and inverse trigonometric functions, including hyperbolic ones, and the cdf of the one dimensional standard Gaussian law. These new bounds may be useful both in theory and in applications: for proving inequalities related to noncentral chi-square cumulative density function, and for bounding powers of Pearson’s chi-squared tests.
Keywords: noncentral chi-square distribution; upper bound.
@article{BGUMI_2020_1_a7,
     author = {V. A. Voloshko and E. V. Vecherko},
     title = {New upper bounds for noncentral chi-square cdf},
     journal = {Journal of the Belarusian State University. Mathematics and Informatics},
     pages = {70--74},
     publisher = {mathdoc},
     volume = {1},
     year = {2020},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/BGUMI_2020_1_a7/}
}
TY  - JOUR
AU  - V. A. Voloshko
AU  - E. V. Vecherko
TI  - New upper bounds for noncentral chi-square cdf
JO  - Journal of the Belarusian State University. Mathematics and Informatics
PY  - 2020
SP  - 70
EP  - 74
VL  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/BGUMI_2020_1_a7/
LA  - en
ID  - BGUMI_2020_1_a7
ER  - 
%0 Journal Article
%A V. A. Voloshko
%A E. V. Vecherko
%T New upper bounds for noncentral chi-square cdf
%J Journal of the Belarusian State University. Mathematics and Informatics
%D 2020
%P 70-74
%V 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/BGUMI_2020_1_a7/
%G en
%F BGUMI_2020_1_a7
V. A. Voloshko; E. V. Vecherko. New upper bounds for noncentral chi-square cdf. Journal of the Belarusian State University. Mathematics and Informatics, Tome 1 (2020), pp. 70-74. http://geodesic.mathdoc.fr/item/BGUMI_2020_1_a7/

[1] J. Segura, “Monotonicity properties and bounds for the chi-square and gamma distributions”, Applied Mathematics and Computation, 246 (2014), 399–415 | DOI | MR | Zbl

[2] S. Andras, A. Baricz, Y. Sun, “The generalized marcum Q-function: an orthogonal polynomial approach”, Acta Universitatis Sapientiae. Mathematica, 3(1) (2011), 60–76 | MR | Zbl

[3] H. Bateman, A. Erdelyi, “Higher transcendental functions”, New York: McGraw-Hill, 1953, 396 | Zbl

[4] J. D. Cook, “Upper bounds on non-central chi-squared tails and truncated normal moments”, UT MD Anderson Cancer Center Department of Biostatistics Working Paper Series, 2010, 62 | DOI | Zbl