Numerical solution of singular integro-differential Prandtl equation by the method of orthogonal polynomials
Journal of the Belarusian State University. Mathematics and Informatics, Tome 3 (2018), pp. 68-74.

Voir la notice de l'article provenant de la source Math-Net.Ru

The paper is constructed and proved computational scheme for a solution of singular Prandtl of integro-differential equations with singular integral over the interval of the real axis, understood in the sense of the Cauchy principal value. This equation reduces to the equivalent Fredholm equation of the second kind by inversion of the singular integral in the class of functions unbounded at the ends and the application of spectral relations for the singular integral. At the same time we investigate the condition of solvability of a Fredholm integral equation of the second kind with a logarithmic kernel of a special kind. The new computational scheme is based on applying spectral relations for the singular integral to the integral entering into the equivalent equation. Uniform estimates of the errors of approximate solutions are obtained.
Keywords: integro-differential equation; Prandtl equation; numerical solution; method of orthogonal polynomials.
@article{BGUMI_2018_3_a7,
     author = {G. A. Rasolko},
     title = {Numerical solution of singular integro-differential {Prandtl} equation by the method of orthogonal polynomials},
     journal = {Journal of the Belarusian State University. Mathematics and Informatics},
     pages = {68--74},
     publisher = {mathdoc},
     volume = {3},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/BGUMI_2018_3_a7/}
}
TY  - JOUR
AU  - G. A. Rasolko
TI  - Numerical solution of singular integro-differential Prandtl equation by the method of orthogonal polynomials
JO  - Journal of the Belarusian State University. Mathematics and Informatics
PY  - 2018
SP  - 68
EP  - 74
VL  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/BGUMI_2018_3_a7/
LA  - ru
ID  - BGUMI_2018_3_a7
ER  - 
%0 Journal Article
%A G. A. Rasolko
%T Numerical solution of singular integro-differential Prandtl equation by the method of orthogonal polynomials
%J Journal of the Belarusian State University. Mathematics and Informatics
%D 2018
%P 68-74
%V 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/BGUMI_2018_3_a7/
%G ru
%F BGUMI_2018_3_a7
G. A. Rasolko. Numerical solution of singular integro-differential Prandtl equation by the method of orthogonal polynomials. Journal of the Belarusian State University. Mathematics and Informatics, Tome 3 (2018), pp. 68-74. http://geodesic.mathdoc.fr/item/BGUMI_2018_3_a7/

[1] L. Prandtl, “Tragflugeltheorie”, Mitteilung, Berlin (Nachrichten von der Gesellschaft der Wissenschaften zu Gottingen – Mathematisch-Physikalische Klasse), Weidmannsche Buchhandlung

[2] V. V. Golubev, “Lektsii po teorii kryla”, Moskva: GIITL, 1949

[3] A. I. Kalandiya, “Matematicheskie metody dvumernoi uprugosti”, Moskva: Nauka, 1973 | MR | Zbl

[4] I. N. Vekua, “O integro-differentsialnom uravnenii Prandtlya”, Prikladnaya matematika i mekhanika, 9(2) (1945), 143–150 | Zbl

[5] B. G. Gabdulkhaev, “Pryamye metody resheniya singulyarnykh integralnykh uravnenii pervogo roda. Chislennyi analiz”, Kazan: Izdatelstvo Kazanskogo universiteta, 1994 | MR

[6] M. A. Sheshko, G. A. Rasolko, V. S. Mastyanitsa, “K priblizhennomu resheniyu integro-differentsialnogo uravneniya Prandtlya”, Differentsialnye uravneniya, 29(9) (1993), 1550–1560 | Zbl

[7] G. Beitmen, A. Erdeii, “Vysshie transtsendentnye funktsii”, Moskva: Nauka, 1966, 295 | MR

[8] S. Pashkovskii, “Vychislitelnye primeneniya mnogochlenov i ryadov Chebysheva”, Moskva: Nauka, 1983

[9] N. I. Muskhelishvili, “Singulyarnye integralnye uravneniya”, Moskva: Nauka, 1968

[10] P. K. Suetin, “Klassicheskie ortogonalnye mnogochleny”, Moskva: Nauka, 1979 | Zbl