On blow-up set of solutions of initial boundary value problem for a system of parabolic equations with nonlocal boundary conditions
Journal of the Belarusian State University. Mathematics and Informatics, Tome 2 (2018), pp. 17-24

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider a system of semilinear parabolic equations $u_{t}=\Delta u + c_{1}(x,t)\nu^{p}, \nu_{t}=\Delta\nu+c_{2}(x,t)u^{q}, (x,t)\in \Omega\times (0,+\infty)$ with nonlinear nonlocal boundary conditions $\dfrac{\partial u}{\partial\eta}= \int\limits_\Omega k_{1}(x,y,t)u^{m}(y,t)dy, \dfrac{\partial\nu}{\partial\eta}= \int\limits_\Omega k_{2}(x,y,t)\nu^{n}(y,t)dy, (x,t)\in \partial\Omega\times (0,+\infty)$ and initial data $u(x,0)=u_{0}(x), \nu(x,0)=\nu_{0}(x), x\in \Omega$, where $p,q,m,n$ are positive constants, $\Omega$ is bounded domain in $\mathbb{R}^{N}(N\geq 1)$ with a smooth boundary $\partial\Omega, \eta$ is unit outward normal on $\partial\Omega$. Nonnegative locally Holder continuous functions $c_{i}(x,t), i=1,2$, are defined for $x\in \overline{\Omega}, t\geq 0$; nonnegative continuous functions $k_{i}(x,y,t), i=1,2$ are defined for $x\in \partial\Omega, y\in \overline{\Omega}, t\geq 0$; nonnegative continuous functions $u_{0}(x), \nu_{0}(x)$ are defined for $x\in \overline{\Omega}$ and satisfy the conditions $\dfrac{\partial u_{0}(x)}{\partial\eta}= \int\limits_\Omega k_{1}(x,y,0)u_{0}^{m}(y)dy, \dfrac{\partial \nu_{0}(x)}{\partial\eta}= \int\limits_\Omega k_{2}(x,y,0)\nu_{0}^{n}(y)dy$ for $x\in \partial\Omega$. In the paper blow-up set of classical solutions is investigated. It is established that blow-up of the solutions can occur only on the boundary $\partial\Omega$ if $max(p,q)\leq 1, max(m,n)>1$ and under certain conditions for the coefficients $k_{i}(x,y,t), i=1,2$.
Keywords: system of semilinear parabolic equations, nonlocal boundary conditions, blow-up set.
@article{BGUMI_2018_2_a2,
     author = {A. Gladkov and A. I. Nikitin},
     title = {On blow-up set of solutions of initial boundary value problem for a system of parabolic equations with nonlocal boundary conditions},
     journal = {Journal of the Belarusian State University. Mathematics and Informatics},
     pages = {17--24},
     publisher = {mathdoc},
     volume = {2},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/BGUMI_2018_2_a2/}
}
TY  - JOUR
AU  - A. Gladkov
AU  - A. I. Nikitin
TI  - On blow-up set of solutions of initial boundary value problem for a system of parabolic equations with nonlocal boundary conditions
JO  - Journal of the Belarusian State University. Mathematics and Informatics
PY  - 2018
SP  - 17
EP  - 24
VL  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/BGUMI_2018_2_a2/
LA  - ru
ID  - BGUMI_2018_2_a2
ER  - 
%0 Journal Article
%A A. Gladkov
%A A. I. Nikitin
%T On blow-up set of solutions of initial boundary value problem for a system of parabolic equations with nonlocal boundary conditions
%J Journal of the Belarusian State University. Mathematics and Informatics
%D 2018
%P 17-24
%V 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/BGUMI_2018_2_a2/
%G ru
%F BGUMI_2018_2_a2
A. Gladkov; A. I. Nikitin. On blow-up set of solutions of initial boundary value problem for a system of parabolic equations with nonlocal boundary conditions. Journal of the Belarusian State University. Mathematics and Informatics, Tome 2 (2018), pp. 17-24. http://geodesic.mathdoc.fr/item/BGUMI_2018_2_a2/