On representation varieties of some HNN-extensions of free groups
Journal of the Belarusian State University. Mathematics and Informatics, Tome 2 (2018), pp. 10-16.

Voir la notice de l'article provenant de la source Math-Net.Ru

In the article we provide the description of the structure and the properties of representation varieties $R_{n}(G(p,q))$ of the groups with the presentation $G(p,q)=\langle x_{1},\dots , x_{2},t|t(x_{1}^{2}\dots x_{g}^{2})=(x_{1}^{2}\dots x_{g}^{2})^{q}\rangle$, where $g\geq 3, |p|>q\geq 1$. Irreducible components of $R_{n}(G(p,q))$ are found, their dimensions are calculated and it is proved, that every irreducible component of $R_{n}(G(p,q))$ is a rational variety.
Keywords: a group presentation, a representation variety, a dimension of a variety, a rational variety.
@article{BGUMI_2018_2_a1,
     author = {A. N. Admiralova and V. V. Benyash-Krivets},
     title = {On representation varieties of some {HNN-extensions} of free groups},
     journal = {Journal of the Belarusian State University. Mathematics and Informatics},
     pages = {10--16},
     publisher = {mathdoc},
     volume = {2},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/BGUMI_2018_2_a1/}
}
TY  - JOUR
AU  - A. N. Admiralova
AU  - V. V. Benyash-Krivets
TI  - On representation varieties of some HNN-extensions of free groups
JO  - Journal of the Belarusian State University. Mathematics and Informatics
PY  - 2018
SP  - 10
EP  - 16
VL  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/BGUMI_2018_2_a1/
LA  - ru
ID  - BGUMI_2018_2_a1
ER  - 
%0 Journal Article
%A A. N. Admiralova
%A V. V. Benyash-Krivets
%T On representation varieties of some HNN-extensions of free groups
%J Journal of the Belarusian State University. Mathematics and Informatics
%D 2018
%P 10-16
%V 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/BGUMI_2018_2_a1/
%G ru
%F BGUMI_2018_2_a1
A. N. Admiralova; V. V. Benyash-Krivets. On representation varieties of some HNN-extensions of free groups. Journal of the Belarusian State University. Mathematics and Informatics, Tome 2 (2018), pp. 10-16. http://geodesic.mathdoc.fr/item/BGUMI_2018_2_a1/

[1] A. Lubotzky, A. R. Magid, “Varieties of Representations of Finitely Generated Groups”, American Mathematical Society: Memoirs of the American Mathematical Society, 336 (1985), 117 | MR | Zbl

[2] A. S. Rapinchuk, V. V. Benyash-Krivetz, V. I. Chernousov, “Representation varieties of the fundamental groups of compact orientable surfaces”, Israel Journal of Mathematics, 93(1) (1996), 29–71 | DOI | MR | Zbl

[3] V. V. Benyash-Krivets, V. I. Chernousov, “Mnogoobraziya predstavlenii fundamentalnykh grupp kompaktnykh neorientiruemykh poverkhnostei”, Matematicheskii sbornik, 188(7) (1997), 47–92 | DOI | MR | Zbl

[4] V. V. Benyash-Krivets, I. O. Govorushko, “Mnogoobraziya predstavlenii i kharakterov grupp Baumslaga – Solitera”, Trudy Matematicheskogo instituta imeni VA Steklova RAN, 292 (2016), 26–42 | DOI | Zbl

[5] V. V. Benyash-Krivets, I. O. Govorushko, “Mnogoobraziya predstavlenii grupp Baumslaga – Solitera v sluchae ne vzaimno prostykh pokazatelei”, Izvestiya Natsionalnoi akademii nauk Belarusi. Seriya fiziko-matematicheskikh nauk, 1 (2016), 52–56

[6] A. N. Admiralova, V. V. Benyash-Krivets, “O mnogoobraziyakh predstavlenii i kharakterov odnogo klassa grupp s odnim sootnosheniem”, Vestnik BGU. Fizika. Matematika. Informatika, 3 (2016), 166–172

[7] V. V. Benyash-Krivets, “Mnogoobraziya predstavlenii neevklidovykh kristallograficheskikh grupp”, Doklady NAN Belarusi, 44(4) (2000), 37–40 | MR

[8] F. R. Gantmakher, “Teoriya matrits”, Moskva: Nauka, 1967