On representation varieties of some HNN-extensions of free groups
Journal of the Belarusian State University. Mathematics and Informatics, Tome 2 (2018), pp. 10-16

Voir la notice de l'article provenant de la source Math-Net.Ru

In the article we provide the description of the structure and the properties of representation varieties $R_{n}(G(p,q))$ of the groups with the presentation $G(p,q)=\langle x_{1},\dots , x_{2},t|t(x_{1}^{2}\dots x_{g}^{2})=(x_{1}^{2}\dots x_{g}^{2})^{q}\rangle$, where $g\geq 3, |p|>q\geq 1$. Irreducible components of $R_{n}(G(p,q))$ are found, their dimensions are calculated and it is proved, that every irreducible component of $R_{n}(G(p,q))$ is a rational variety.
Keywords: a group presentation, a representation variety, a dimension of a variety, a rational variety.
@article{BGUMI_2018_2_a1,
     author = {A. N. Admiralova and V. V. Benyash-Krivets},
     title = {On representation varieties of some {HNN-extensions} of free groups},
     journal = {Journal of the Belarusian State University. Mathematics and Informatics},
     pages = {10--16},
     publisher = {mathdoc},
     volume = {2},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/BGUMI_2018_2_a1/}
}
TY  - JOUR
AU  - A. N. Admiralova
AU  - V. V. Benyash-Krivets
TI  - On representation varieties of some HNN-extensions of free groups
JO  - Journal of the Belarusian State University. Mathematics and Informatics
PY  - 2018
SP  - 10
EP  - 16
VL  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/BGUMI_2018_2_a1/
LA  - ru
ID  - BGUMI_2018_2_a1
ER  - 
%0 Journal Article
%A A. N. Admiralova
%A V. V. Benyash-Krivets
%T On representation varieties of some HNN-extensions of free groups
%J Journal of the Belarusian State University. Mathematics and Informatics
%D 2018
%P 10-16
%V 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/BGUMI_2018_2_a1/
%G ru
%F BGUMI_2018_2_a1
A. N. Admiralova; V. V. Benyash-Krivets. On representation varieties of some HNN-extensions of free groups. Journal of the Belarusian State University. Mathematics and Informatics, Tome 2 (2018), pp. 10-16. http://geodesic.mathdoc.fr/item/BGUMI_2018_2_a1/